
 

 

 

 

 
 

 

 

 

SH100/300/SH500 PLC Programming and Application Manual 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hope Senlan Science and Technology Holding Corp., Ltd. 
 

 

 



Preface                                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

 
 

Preface 

Brief 

⚫ The SH Series PLC, independently developed by SLANVERT, is a new-generation compact controller 

featuring EtherCAT communication for real-time data transmission and robust motion control capabilities, 

and its flexible I/O extension enables adaptable system configuration. 

⚫ FB/FC encapsulation improves engineering efficiency by reducing repetitive development. 

⚫ With multi-protocol interfaces (RS485, CAN, Ethernet, EtherCAT), the SH series adapts to diverse network 

architectures. 

⚫ Available in four models (SH100/SH300/SH500), the SH series mid-sized controllers address automation 

demands requiring compact dimensions, multi-axis control, temperature regulation, and industrial 

networking. 

⚫ This manual details programming fundamentals, quick setup, bus communication, motion control, and high-

speed counter implementation for SH300/SH500 series PLCs. 

 

Version Change Log 

 

 

Manual Acquisition 

This manual is not shipped with products. To obtain the PDF file, please: 

⚫ Log on to the official website of SLANVERT (https://www.SLANVERT.com.cn), Download", search for 

keywords and download the PDF file. 

 

Date Version Content 

202502 V1.0 First version issued 

202506 V1.1 Update SH100 



Catalog                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

I 
 

Catalog 
PREFACE ................................................................................................................................................................ I 

1 GENERAL ........................................................................................................................................................... 1 

1.1 INTRODUCTION ................................................................................................................................................ 1 
1.1.1 Product Introduction ................................................................................................................................ 1 
1.1.2 Software Introduction ............................................................................................................................... 1 
1.1.3 SH Series Specifications ........................................................................................................................... 2 
1.1.4 Networking Solutions .............................................................................................................................. 4 

1.2 SOFTWARE ACQUISITION AND INSTALLATION ................................................................................................... 6 
1.2.1 Acquisition ............................................................................................................................................... 6 
1.2.2 Installation Requirements ......................................................................................................................... 6 
1.2.3 Installation Steps ...................................................................................................................................... 6 
1.2.4 Uninstallation Steps ................................................................................................................................. 9 
1.2.5 AutoSoft Main Interface.......................................................................................................................... 10 

2 QUICKSTART .............................................................................................................................................. - 12 - 

2.1 GENERAL .................................................................................................................................................. - 12 - 
2.2 PC-PLC COMMUNICATION CONNECTION .................................................................................................... - 12 - 

2.2.1 Overview ............................................................................................................................................ - 12 - 
2.2.2 Ethernet-based Connection................................................................................................................. - 12 - 
2.2.3 USB-based Connection ....................................................................................................................... - 14 - 

2.3 PROGRAMMING PROCESS ............................................................................................................................... 16 
2.4 PROGRAMMING EXAMPLE .............................................................................................................................. 17 

2.4.1 Requirements ......................................................................................................................................... 17 
2.4.2 New Project ........................................................................................................................................... 17 
2.4.3 Target PLC Connection .......................................................................................................................... 17 
2.4.4 System Configuration (Optional) ............................................................................................................ 18 
2.4.5 Programming and Compilation .............................................................................................................. 19 
2.4.6 Program Download and Debugging Monitoring ..................................................................................... 21 

3 SOFTWARE MODEL ................................................................................................................................... - 23 - 

3.1 PLC OPERATION MECHANISM .................................................................................................................... - 23 - 
3.2 CONSTANT SCANNING TIME SETTING ......................................................................................................... - 23 - 
3.3 USER PROGRAM WATCHDOG...................................................................................................................... - 24 - 
3.4 USER FILE DOWNLOAD/STORAGE ............................................................................................................... - 24 - 
3.5 ELEMENT VALUE INITIALIZATION............................................................................................................... - 24 - 
3.6 USER PROGRAM SECURITY ......................................................................................................................... - 25 - 
3.7 SYSTEM CONFIGURATION ........................................................................................................................... - 25 - 

3.7.1 Input Filter......................................................................................................................................... - 26 - 
3.7.2 No Battery Mode ................................................................................................................................ - 26 - 
3.7.3 Data Block Configuration................................................................................................................... - 27 - 
3.7.4 Element Comment .............................................................................................................................. - 27 - 
3.7.5 Large/Small End Mode ....................................................................................................................... - 28 - 

3.8 OPERATION AND STATUS CONTROL ............................................................................................................ - 29 - 
3.8.1 Run/Stop States .................................................................................................................................. - 29 - 
3.8.2 State Transition .................................................................................................................................. - 29 - 
3.8.3 Output Point Status in Stop State ........................................................................................................ - 30 - 

3.9 SYSTEM DEBUGGING ................................................................................................................................. - 30 - 
3.9.1 Program Upload/Download ............................................................................................................... - 30 - 
3.9.2 Element Memory Table....................................................................................................................... - 32 - 
3.9.3 Online Clock Settings ......................................................................................................................... - 32 - 
3.9.4 Online Modification ........................................................................................................................... - 33 - 
3.9.5 Sequence Monitor .............................................................................................................................. - 34 - 
3.9.6 Program Clear/Format ...................................................................................................................... - 35 - 
3.9.7 Fault Diagnostics ............................................................................................................................... - 36 - 
3.9.8 PLC Information ................................................................................................................................ - 37 - 



Catalog                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

II 
 

4 PROGRAMMING BASICS .......................................................................................................................... - 38 - 

4.1 OVERVIEW ................................................................................................................................................ - 38 - 
4.2 SOFT ELEMENTS ........................................................................................................................................ - 38 - 

4.2.1 Bit Soft Elements ................................................................................................................................ - 38 - 
4.2.2 Word Soft Elements ............................................................................................................................ - 39 - 

4.3 DATA TYPE ............................................................................................................................................... - 40 - 
4.3.1 Constant ............................................................................................................................................ - 41 - 
4.3.2 Variables ........................................................................................................................................... - 41 - 

4.4 CUSTOM VARIABLES .................................................................................................................................. - 41 - 
4.5 ARRAY VARIABLE ..................................................................................................................................... - 43 - 
4.6 STRUCT VARIABLE .................................................................................................................................... - 44 - 
4.7 STRING VARIABLE ..................................................................................................................................... - 45 - 
4.8 VARIABLE ADDRESS BINDING .................................................................................................................... - 46 - 

4.8.1 Overview ............................................................................................................................................ - 46 - 
4.8.2 Variable Properties ............................................................................................................................ - 46 - 
4.8.3 Basic Variables Binding ..................................................................................................................... - 47 - 
4.8.4 Array Variables Binding ..................................................................................................................... - 47 - 
4.8.5 Struct Variables Binding .................................................................................................................... - 47 - 

4.9 NOTES ON ARRAYS .................................................................................................................................... - 48 - 
4.9.1 Indexing Rules.................................................................................................................................... - 48 - 
4.9.2 Basic Indexing.................................................................................................................................... - 48 - 
4.9.3 Complex Indexing .............................................................................................................................. - 48 - 
4.9.4 Programming Example ....................................................................................................................... - 49 - 

4.10 POINTER-TYPE VARIABLES ...................................................................................................................... - 49 - 
4.10.1 Definition ......................................................................................................................................... - 49 - 
4.10.2 Address Pointed by Pointer Variables ............................................................................................... - 50 - 
4.10.3 PT Pointer Address Operations ........................................................................................................ - 51 - 
4.10.4 Indirect Addressing .......................................................................................................................... - 52 - 

4.11 SYSTEM VARIABLES................................................................................................................................. - 52 - 
4.11.1 Overview .......................................................................................................................................... - 52 - 
4.11.2_McAxis Parameters ......................................................................................................................... - 52 - 
4.11.3_ECATMaster Parameters ................................................................................................................. - 54 - 
4.11.4_ECATSlave Parameters ................................................................................................................... - 54 - 

4.12 TIMER ..................................................................................................................................................... - 55 - 
4.12.1 Overview .......................................................................................................................................... - 55 - 
4.12.2 Pulse Timer (DTPR) ......................................................................................................................... - 55 - 
4.12.3 On-Delay Timer (DTON) .................................................................................................................. - 56 - 
4.12.4 Off-Delay Timer (DTOF) .................................................................................................................. - 57 - 
4.12.5 Time Accumulation Timer (DTACR) ................................................................................................. - 58 - 

4.13 GRAPHICAL BLOCK INSTRUCTIONS ........................................................................................................... - 58 - 
4.13.1 Instruction Structure......................................................................................................................... - 58 - 
4.13.2 Implementation Workflow ................................................................................................................. - 59 - 
4.13.3 Quick Variable Addition ................................................................................................................... - 59 - 

4.14 SUBROUTINES .......................................................................................................................................... - 60 - 
4.14.1 Overview .......................................................................................................................................... - 60 - 
4.14.2 Subroutine Concepts......................................................................................................................... - 61 - 
4.14.3 Subroutine Execution Mechanism ..................................................................................................... - 61 - 
4.14.4 Subroutine Nesting Levels ................................................................................................................ - 61 - 
4.14.5 Subroutine Variable Table Definition................................................................................................ - 61 - 
4.14.6 Subroutine Parameter Passing.......................................................................................................... - 62 - 
4.14.7 Subroutine Usage Example ............................................................................................................... - 63 - 
4.14.8 Subroutine Usage Notes ................................................................................................................... - 63 - 

4.15 INTERRUPT SUBROUTINE .......................................................................................................................... - 64 - 
4.15.1 Interrupt Overview ........................................................................................................................... - 64 - 
4.15.2 Timed Interrupts ............................................................................................................................... - 64 - 
4.15.3 External Interrupt............................................................................................................................. - 65 - 
4.15.4 High-speed Counter Interrupt ........................................................................................................... - 67 - 
4.15.5 Pulse Output Complete Interrupt ...................................................................................................... - 68 - 
4.15.6 Axis High-speed Counter Comparison Interrupt ................................................................................ - 69 - 



Catalog                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

III 
 

4.15.7 Serial Port Interrupt ......................................................................................................................... - 70 - 
4.16 FUNCTIONS AND FUNCTION BLOCKS (FB&FC) ......................................................................................... - 72 - 

4.16.1 Function Block (FB) ......................................................................................................................... - 72 - 
4.16.2 Function (FC) .................................................................................................................................. - 76 - 
4.16.3 Encrypt Function Blocks/Functions .................................................................................................. - 79 - 

5 PROGRAMMING LANGUAGE .................................................................................................................. - 81 - 

5.1 STRUCTURED TEXT (ST) ............................................................................................................................ - 81 - 
5.1.1Overview............................................................................................................................................. - 81 - 
5.1.2 Basic Rules of ST Language ............................................................................................................... - 81 - 
5.1.3 ST Expressions ................................................................................................................................... - 81 - 
5.1.4 Variables ........................................................................................................................................... - 82 - 
5.1.5 Constants ........................................................................................................................................... - 83 - 
5.1.6 FB/FC/SBR/Interrupt Invocation ........................................................................................................ - 83 - 

5.2 SYNTAX INSTRUCTION ............................................................................................................................... - 84 - 
5.2.1 Assignment Statement ......................................................................................................................... - 85 - 
5.2.2 Function Block Invocation .................................................................................................................. - 85 - 
5.2.3 IF Statement ....................................................................................................................................... - 85 - 
5.2.4 IF-ELSE Statement ............................................................................................................................. - 86 - 
5.2.5 CASE Statement ................................................................................................................................. - 87 - 
5.2.6 FOR Loop Statement .......................................................................................................................... - 88 - 
5.2.7 WHILE Loop Statement ...................................................................................................................... - 89 - 
5.2.8 Repeat Loop ....................................................................................................................................... - 89 - 
5.2.9 EXIT Statement .................................................................................................................................. - 90 - 
5.2.10 CONTINUE Statement ...................................................................................................................... - 90 - 
5.2.11 RETURN Statement .......................................................................................................................... - 90 - 
5.2.12 GOTO and LABEL Statements .......................................................................................................... - 91 - 
5.2.13 Comment .......................................................................................................................................... - 91 - 

5.3 ST LANGUAGE INSTRUCTIONS .................................................................................................................... - 91 - 
5.3.1 Program Control Instructions ............................................................................................................. - 91 - 
5.3.2 Bit Processing Instructions ................................................................................................................. - 91 - 
5.3.3 Pointer Instructions ............................................................................................................................ - 92 - 
5.3.4 Numeric Conversion Instructions ........................................................................................................ - 92 - 
5.3.5 Mathematical Function Instructions ................................................................................................... - 92 - 
5.3.6 Data Processing Instructions .............................................................................................................. - 92 - 
5.3.7 String Processing Instructions ............................................................................................................ - 92 - 
5.3.8 Timer Instruction ............................................................................................................................... - 92 - 
5.3.9 MC Axis Control Instructions ............................................................................................................. - 93 - 
5.3.10 Axis Group Instructions .................................................................................................................... - 93 - 
5.3.11 Electronic Cam Instructions ............................................................................................................. - 94 - 
5.3.12 EtherCAT Communication Instructions ............................................................................................. - 94 - 
5.3.13 Local High-Speed Counter Instructions ............................................................................................ - 94 - 

5.4 SMART INPUT AND TOOLTIPS...................................................................................................................... - 94 - 
5.4.1 Engineering Example ......................................................................................................................... - 94 - 
5.4.2 Quick Input ........................................................................................................................................ - 94 - 
5.4.3 Mouse Hover Tooltips ........................................................................................................................ - 95 - 

5.5 PROGRAMMING LANGUAGE (LD) ............................................................................................................... - 95 - 
5.6 SEQUENTIAL FUNCTION CHART (SFC) ........................................................................................................ - 95 - 

6 EXTENSION MODULE CONFIGURATION.............................................................................................. - 96 - 

6.1 SH LOCAL RIGHT EXTENSION MODULE CONFIGURATION ............................................................................ - 96 - 
6.1.1 Extension Module Auto-Scan .............................................................................................................. - 96 - 
6.1.2 IO Module Configuration ................................................................................................................... - 97 - 
6.1.3 4PT Module Configuration ................................................................................................................. - 99 - 
6.1.4 4TC Module Configuration ............................................................................................................... - 101 - 
6.1.5 4AD Module Configuration .............................................................................................................. - 103 - 
6.1.6 4DA Module Configuration .............................................................................................................. - 105 - 

6.2 SH LOCAL LEFT EXTENSION MODULE CONFIGURATION ............................................................................ - 106 - 
6.2.1 SH Extension Hardware Configuration ............................................................................................. - 106 - 



Catalog                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

IV 
 

6.2.2 SH Left Extension Supported Types .................................................................................................. - 107 - 
6.2.3 Left Extension Auto-Scan .................................................................................................................. - 107 - 
6.2.4 Extension Configuration Example..................................................................................................... - 108 - 

6.3 SH-RTU-ETC COUPLER .......................................................................................................................... - 110 - 
6.3.1 Module Auto-Scan Configuration ..................................................................................................... - 111 - 
6.3.2 IO Module Configuration Example ................................................................................................... - 112 - 

7 SERIAL COMMUNICATION .................................................................................................................... - 115 - 

7.1 OVERVIEW .............................................................................................................................................. - 115 - 
7.1.1 Communication Protocol .................................................................................................................. - 115 - 
7.1.2 Port Mapping ................................................................................................................................... - 115 - 
7.1.3 Serial Port Transmission Medium ..................................................................................................... - 115 - 
7.1.4 RS485 Serial Communication Networking ........................................................................................ - 115 - 

7.2 FREEPORT COMMUNICATION .................................................................................................................... - 116 - 
7.2.1 Freeport Protocol Configuration ...................................................................................................... - 116 - 
7.2.2 Program Example ............................................................................................................................ - 117 - 

7.3 MODBUS COMMUNICATION PROTOCOL ..................................................................................................... - 118 - 
7.3.1 Overview .......................................................................................................................................... - 118 - 
7.3.2 Modbus Function Codes ................................................................................................................... - 118 - 
7.3.3 Modbus Slave Address ...................................................................................................................... - 122 - 
7.3.4 Modbus Slave Communication Configuration ................................................................................... - 123 - 
7.3.5 Modbus Master Communication Configuration ................................................................................. - 123 - 
7.3.6 MODRW Instruction Description ...................................................................................................... - 124 - 
7.3.7Modbus Configuration Table ............................................................................................................. - 124 - 
7.3.8 Modbus-RTU Communication Example ............................................................................................ - 126 - 
7.3.9 Slave Address Modification .............................................................................................................. - 127 - 

7.4 N:N COMMUNICATION PROTOCOL ............................................................................................................ - 127 - 
7.4.1 Overview .......................................................................................................................................... - 127 - 
7.4.2 N:N Network Data Transmission ...................................................................................................... - 127 - 
7.4.3 N:N Network Architecture ................................................................................................................ - 128 - 
7.4.4 N:N Refresh Mode ............................................................................................................................ - 129 - 
7.4.5 Enhanced Refresh Modes ................................................................................................................. - 132 - 
7.4.6 N:N Protocol Usage Example ........................................................................................................... - 134 - 

8 ETHERNET COMMUNICATION ............................................................................................................. - 137 - 

8.1 OVERVIEW .............................................................................................................................................. - 137 - 
8.2 HARDWARE INTERFACE SPECIFICATIONS .................................................................................................. - 137 - 
8.3 IP ADDRESS CONFIGURATION/VIEWING .................................................................................................... - 137 - 
8.4 MASTER CONFIGURATION ........................................................................................................................ - 138 - 
8.5 SLAVE CONFIGURATION ........................................................................................................................... - 140 - 
8.6 MODBUSTCP FUNCTION CODES ............................................................................................................... - 140 - 
8.7 MODBUSTCP COMMUNICATION ADDRESS ................................................................................................ - 140 - 
8.8 DEVICE NAME MODIFICATION .................................................................................................................. - 141 - 
8.9 ETHERNET-RELATED SD REGISTERS ......................................................................................................... - 142 - 
8.10 ETHERNET FREE PORT PROTOCOL .......................................................................................................... - 143 - 

8.10.1 Overview ........................................................................................................................................ - 143 - 
8.10.2 Transmission Control Protocol ....................................................................................................... - 143 - 
8.10.3 Free Port Protocol High/Low Byte ................................................................................................. - 144 - 
8.10.4 Freeport Protocol Instruction List .................................................................................................. - 144 - 

8.11 FREEPORT PROTOCOL INSTRUCTION DESCRIPTIONS ................................................................................. - 144 - 
8.11.1 TCP_Listen Instruction (Establish Listening State - Server) ............................................................ - 144 - 
8.11.2 TCP_Accept Instruction (Establish Connection - Server) ................................................................ - 145 - 
8.11.3 TCP_Connect Instruction (Establish Connection - Client) ............................................................... - 146 - 
8.11.4 TCP_Close Instruction (Close Ethernet Connection) ....................................................................... - 147 - 
8.11.5 TCP_Send Instruction (Ethernet Data Transmission) ...................................................................... - 148 - 
8.11.6 TCP_Receive Instruction (Ethernet Data Reception) ....................................................................... - 149 - 

8.12 TCP SERVER COMMUNICATION EXAMPLE .............................................................................................. - 150 - 
8.13 TCP CLIENT COMMUNICATION EXAMPLE ............................................................................................... - 150 - 
8.14 TCP FREEPORT ERROR CODES ............................................................................................................... - 151 - 



Catalog                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

V 
 

9 CAN COMMUNICATION .......................................................................................................................... - 152 - 

9.1 OVERVIEW .............................................................................................................................................. - 152 - 
9.2 HARDWARE INTERFACE ............................................................................................................................ - 152 - 
9.3 CAN COMMUNICATION NETWORKING ...................................................................................................... - 152 - 

9.3.1 Relationship Between Distance and Baud Rate ................................................................................. - 153 - 
9.4 CANOPEN PROTOCOL .............................................................................................................................. - 154 - 

9.4.1 CANopen Indicators ......................................................................................................................... - 154 - 
9.4.2 CANopen Terms ............................................................................................................................... - 154 - 

9.5 CANOPEN CONFIGURATION ..................................................................................................................... - 154 - 
9.5.1 Master Configuration ....................................................................................................................... - 154 - 
9.5.2 Slave Configuration.......................................................................................................................... - 157 - 
9.5.3 PDO Mapping Configuration ........................................................................................................... - 159 - 
9.5.4 PDO Property .................................................................................................................................. - 160 - 
9.5.5 Service Data Objects (SDO) ............................................................................................................. - 161 - 
9.5.6 Online Debugging ............................................................................................................................ - 162 - 

9.6 CANOPEN TROUBLESHOOTING................................................................................................................. - 163 - 
9.6.1 Troubleshooting Methods ................................................................................................................. - 163 - 
9.6.2 EMCY Error Code ........................................................................................................................... - 163 - 

9.7 CANOPEN AXIS CONTROL INSTRUCTIONS ................................................................................................ - 164 - 
9.7.1 Axis Control Instructions List ........................................................................................................... - 164 - 
9.7.2 Axis Control Command State Machine .............................................................................................. - 164 - 
9.7.3 Error Code Descriptions .................................................................................................................. - 165 - 

10 ETHERCAT COMMUNICATION ........................................................................................................... - 167 - 

10.1 OVERVIEW............................................................................................................................................. - 167 - 
10.2 ETHERCAT INTERFACE SPECIFICATIONS................................................................................................. - 167 - 
10.3 MASTER CONFIGURATION ...................................................................................................................... - 167 - 

10.3.1 Importing Device XML ................................................................................................................... - 167 - 
10.3.2 Scanning Slaves.............................................................................................................................. - 167 - 
10.3.3 Configuring the Master .................................................................................................................. - 169 - 
10.3.4 Start/Stop/Disable/Enable .............................................................................................................. - 170 - 
10.3.5 Monitoring Master System Variables .............................................................................................. - 170 - 

10.4 SLAVE CONFIGURATION ......................................................................................................................... - 171 - 
10.4.1 Distributed Clock ........................................................................................................................... - 171 - 
10.4.2 Process Data .................................................................................................................................. - 172 - 
10.4.3 Startup Parameters ........................................................................................................................ - 173 - 
10.4.4 I/O Mapping................................................................................................................................... - 174 - 
10.4.5 Slave System Variables ................................................................................................................... - 175 - 

11 ETHERCAT MOTION CONTROL ......................................................................................................... - 177 - 

11.1 OVERVIEW............................................................................................................................................. - 177 - 
11.1.1 Basic Structure and Control Logic .................................................................................................. - 177 - 
11.1.2 Motion Instruction Scheduling Mechanism...................................................................................... - 177 - 
11.1.3 Axis Type Configuration ................................................................................................................. - 177 - 
11.1.4 PLCOpen State Machine ................................................................................................................ - 178 - 
11.1.5 Axis Parameter Description ............................................................................................................ - 178 - 
11.1.6 Axis Control Instructions ................................................................................................................ - 181 - 
11.1.7 Online Modification of Axis Configuration Parameters ................................................................... - 181 - 

11.2 MOTION CONTROL AXIS CONFIGURATION .............................................................................................. - 184 - 
11.2.1 Axis Type ....................................................................................................................................... - 184 - 
11.2.2 Basic Settings ................................................................................................................................. - 185 - 
11.2.3 Unit Conversion ............................................................................................................................. - 185 - 
11.2.4 Mode Setting .................................................................................................................................. - 187 - 
11.2.5 Software Limit ................................................................................................................................ - 189 - 
11.2.6 Error Deceleration ......................................................................................................................... - 189 - 
11.2.7 Following Error Threshold ............................................................................................................. - 189 - 
11.2.8 Axis Velocity .................................................................................................................................. - 189 - 
11.2.9 Maximum Torque ........................................................................................................................... - 189 - 
11.2.10 Probe ........................................................................................................................................... - 189 - 



Catalog                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

VI 
 

11.2.11 Pulse Output Mode Configuration ................................................................................................ - 189 - 
11.2.12 Hardware Limit ............................................................................................................................ - 189 - 
11.2.13 Origin Return ............................................................................................................................... - 189 - 
11.2.14 Curve Type ................................................................................................................................... - 191 - 

11.3 QUICK SETUP EXAMPLE FOR ETHERCAT AXIS........................................................................................ - 192 - 
11.3.1 Bus/Local Pulse Axis Configuration ................................................................................................ - 193 - 
11.3.2 Axis Parameter Settings .................................................................................................................. - 195 - 
11.3.3 Programming ................................................................................................................................. - 196 - 
11.3.4 Compilation/Download .................................................................................................................. - 196 - 
11.3.5 Online Monitoring .......................................................................................................................... - 196 - 
11.3.6 Fault Types .................................................................................................................................... - 196 - 

12 HIGH-SPEED COUNTER ........................................................................................................................ - 198 - 

12.1 OVERVIEW............................................................................................................................................. - 198 - 
12.2 CREATING A COUNTER AXIS................................................................................................................... - 198 - 
12.3 UNIT CONVERSION FOR COUNTER AXIS .................................................................................................. - 198 - 
12.4 OPERATING MODE CONFIGURATION ....................................................................................................... - 199 - 

12.4.1 Linear Mode................................................................................................................................... - 199 - 
12.4.2 Rotation Mode ................................................................................................................................ - 200 - 

12.5 COUNTER PARAMETER CONFIGURATION ................................................................................................. - 200 - 
12.5.1 Overview ........................................................................................................................................ - 200 - 
12.5.2 Counter Mode ................................................................................................................................ - 201 - 
12.5.3 Reset Configuration ........................................................................................................................ - 203 - 
12.5.4 Probe Terminal .............................................................................................................................. - 203 - 
12.5.5 Preset Terminal .............................................................................................................................. - 203 - 
12.5.6 Compare Output Terminal .............................................................................................................. - 203 - 

12.6 COUNTER AXIS INSTRUCTION APPLICATIONS .......................................................................................... - 203 - 
12.6.1 Overview ........................................................................................................................................ - 203 - 
12.6.2 Position Counting/Speed Measurement Instructions ........................................................................ - 204 - 
12.6.3Position Preset Instruction .............................................................................................................. - 204 - 
12.6.4Probe Instruction ............................................................................................................................ - 204 - 

12.7 COMPARE INSTRUCTIONS ....................................................................................................................... - 206 - 
12.7.1 HC_Compare Instruction ............................................................................................................... - 206 - 
12.7.2 HC_StepCompare Instruction ......................................................................................................... - 206 - 
12.7.3 HC_ArrayCompare Instruction....................................................................................................... - 206 - 

12.8 HIGH-SPEED HARDWARE COMPARE OUTPUT .......................................................................................... - 207 - 
12.9 COMPARE INTERRUPT ............................................................................................................................ - 208 - 

13 INTERPOLATION .................................................................................................................................... - 210 - 

13.1 INTRODUCTION TO INTERPOLATION ........................................................................................................ - 210 - 
13.1.1 Overview ........................................................................................................................................ - 210 - 
13.1.2 Axis Group Instruction List ............................................................................................................. - 210 - 
13.1.3 Configuration Interface .................................................................................................................. - 211 - 

13.2 AXIS GROUP INTERPOLATION EXAMPLE ................................................................................................. - 211 - 
13.2.1 Overview ........................................................................................................................................ - 211 - 
13.2.2 Creating an Axis Group .................................................................................................................. - 212 - 
13.2.3 Enabling the Axis Group ................................................................................................................ - 212 - 
13.2.4 Linear Interpolation ....................................................................................................................... - 213 - 
13.2.5 Circular Interpolation .................................................................................................................... - 213 - 
13.2.6 Axis Group Stop ............................................................................................................................. - 214 - 
13.2.7 Axis Group Pause ........................................................................................................................... - 214 - 

13.3 BUFFER AND TRANSITION....................................................................................................................... - 215 - 
13.3.1 Overview ........................................................................................................................................ - 215 - 
13.3.2 Interrupt + No transition ................................................................................................................ - 215 - 
13.3.3 Buffer + No transition .................................................................................................................... - 215 - 
13.3.4 Merge with previous velocity + No transition .................................................................................. - 216 - 
13.3.5 Angular transition .......................................................................................................................... - 216 - 

14 ELECTRONIC CAM ................................................................................................................................ - 218 - 



Catalog                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

VII 
 

14.1 INTRODUCTION TO ELECTRONIC CAM ..................................................................................................... - 218 - 
14.2 SOFTWARE CONFIGURATION .................................................................................................................. - 218 - 

14.2.1 Overview ........................................................................................................................................ - 218 - 
14.2.2 Cam Table Specifications ............................................................................................................... - 219 - 
14.2.3 Cam Node Configuration ................................................................................................................ - 219 - 
14.2.4 Cam Curve Configuration .............................................................................................................. - 219 - 
14.2.5 Import/Export................................................................................................................................. - 220 - 

14.3 ELECTRONIC CAM OPERATIONS .............................................................................................................. - 220 - 
14.3.1 Gear Motion................................................................................................................................... - 220 - 
14.3.2 Cam Motion ................................................................................................................................... - 222 - 
14.3.3 Cam Curve ..................................................................................................................................... - 223 - 
14.3.4 Cam Table ..................................................................................................................................... - 225 - 
14.3.5 Cam Table Specifications ............................................................................................................... - 225 - 
14.3.6 Create Cam Tables ......................................................................................................................... - 225 - 
14.3.7 Modify Cam Data ........................................................................................................................... - 226 - 
14.3.8 Master Axis Phase Compensation ................................................................................................... - 226 - 
14.3.9 Motion Superposition ..................................................................................................................... - 227 - 

15 OFFLINE SIMULATION ......................................................................................................................... - 228 - 

15.1 OVERVIEW............................................................................................................................................. - 228 - 
15.2 OFFLINE SIMULATION STARTING ............................................................................................................ - 228 - 
15.3 DIGITAL TERMINALS DEBUGGING........................................................................................................... - 229 - 
15.4 SIMULATION DEBUGGING ....................................................................................................................... - 229 - 

15.4.1 Overview ........................................................................................................................................ - 229 - 
15.4.2 PLC Side Configuration ................................................................................................................. - 229 - 
15.4.3 HMI Side Configuration ................................................................................................................. - 230 - 
15.4.4 Debug Starting ............................................................................................................................... - 231 - 

16 TROUBLESHOOTING ............................................................................................................................. - 232 - 

16.1 HARDWARE INDICATORS ........................................................................................................................ - 232 - 
16.2 SOFTWARE DIAGNOSIS ........................................................................................................................... - 232 - 

16.2.1 PLC Basic Information ................................................................................................................... - 232 - 
16.2.2 Historical Operation Faults ............................................................................................................ - 233 - 

16.3 ERROR CODE ......................................................................................................................................... - 233 - 
16.3.1 System Errors SD3 (0-59) ............................................................................................................... - 233 - 
16.3.2 Execution Errors SD20 (60~255) .................................................................................................... - 235 - 
16.3.3 Serial Communication Errors SD50 (1000~1499) ........................................................................... - 236 - 
16.3.4 Ethernet-based CAN Communication Errors SD51 (1500~1999)..................................................... - 239 - 
16.3.5 EtherCAT Error Codes (SD53) ....................................................................................................... - 240 - 
16.3.6 MC Axis Instruction Error Codes.................................................................................................... - 242 - 

17 FIRMWARE UPGRADE .......................................................................................................................... - 244 - 

17.1 FIRMWARE UPGRADE VIA HOST COMPUTER ............................................................................................ - 244 - 
17.1.1 MCU Firmware Upgrade ............................................................................................................... - 244 - 
17.1.2 FPGA Upgrade .............................................................................................................................. - 245 - 

17.2 FIRMWARE UPGRADE VIA SD CARD ....................................................................................................... - 246 - 
17.2.1 MCU Firmware Upgrade ............................................................................................................... - 246 - 
17.2.2 FPGA Upgrade .............................................................................................................................. - 247 - 
17.2.3 Simultaneous MCU&FPGA Upgrade ............................................................................................. - 247 - 

17.3 APPLICATION DOWNLOAD ...................................................................................................................... - 248 - 
17.3.1 Overview ........................................................................................................................................ - 248 - 
17.3.2 Generate .cmf File .......................................................................................................................... - 248 - 
17.3.3 PLC Project Update Example via SD Card ..................................................................................... - 248 - 
17.3.4 PLC Project Update Example via PC.............................................................................................. - 249 - 

  



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

1 
 

1 General 

1.1 Introduction 

1.1.1 Product Introduction 
The SH series is SLANVERT’s next-gen compact PLC. It supports EtherCAT bus communication and multi-

level networking through RS485, CAN, Ethernet, and EtherCAT interfaces. With robust motion control, distributed 

I/O control, and FB/FC functions for process encapsulation and reuse, it is widely applicable in industrial automation 

to ensure efficient operation, precise control, and seamless communication for equipment. 

The SH series compact controllers include four models (SH100/SH200/SH300/SH500), addressing diverse 

requirements for small-to-medium-sized automation equipment. Optimized for space-constrained environments 

requiring multi-axis motion control, precision temperature regulation, and industrial networking, the SH series 

controllers deliver excellent performance in providing robust control for efficient and stable operation of various 

automated systems. 

1.1.2 Software Introduction 
AutoSoft, SLANVERT's programming software for small PLCs, features an intuitive programming and 

debugging interface. It enables flexible communication and control implementation and is compatible with multiple 

programming languages like Ladder Diagram (LD), Sequential Function Chart (SFC), and Structured Text (ST), 

catering to different users' programming habits and needs. 

AutoSoft's Features: 

◆ Flexible Communication: Supports PLC communication via COM, USB, and Ethernet interfaces, enabling 

efficient data exchange while facilitating remote operation and collaborative debugging; 

◆ Comprehensive Network Support: Configurable for Modbus and CANopen protocols, simplifying multi-

protocol integration and enhancing workflow efficiency. 

◆ Precision Motion Control: Offers a wide range of motion control instructions, such as axis positioning, 

electronic cam, interpolation, and flying/chasing shear, meeting intricate automation requirements. 

◆ Diverse Debugging: Provides multiple debugging functions, including motion trajectory graph, monitoring, 

online modification, oscilloscope, and fault diagnosis, shortening debugging and troubleshooting time. 

◆ IP Protection System: Implements password-protected upload/download protocols, device authentication, 

and access restrictions to prevent unauthorized acquisition and operations and secure user's intellectual 

property. 

  



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

2 
 

1.1.3 SH Series Specifications 
(I) SH100 Series Specifications 

Name Specification/Description 
 

I/O Configuration 
Max. I/O points 16(8 input/8 output) 
Extension module 
quantity 

 
None 

 
 

User File Capacity 

User program 
capacity 

 
16K steps 

Data capacity 2K Bytes are saved at power outage; 

Data block size 8000 D components, 32K R components 
 

Command 
Processing Speed 

Basic commands 0.2μs/each 
Application 
commands 

 
A few μs to several hundred μs/each 

 
 
 
 
 
 
 
 
 

Soft Component 
Resources 

I/O points 8input/8 output (X0~X7 input, Y0~Y7 output) 
Auxiliary relay 2048 (M0~M2047) 
Local auxiliary relay 64 (LM0~LM63) 
Special auxiliary 
relay 

 
512(SM0~SM511) 

Status relay 1024 (S0~S1023) 
 
 

Timer 

255(T0~T255) 
(1) 100ms accuracy: T0~T209 
(2) 10ms accuracy: T210~T251 
(3) 1ms accuracy: T252~T255 
(4) 1ms accuracy: DTON/DTOF/DTACR (function blocks) 

 
Counter 

264 (C0~C263) 
(1) 16-bit increment counter: C0~C199 
(2) 32-bit increment/decrement counter: C200~C235 
(3) 32-bit high-speed counter: C236~C263 

Data register 8000 (D0~D7999), 
Local data register 64 (V0~V63) 
Variable addressing 
register 

 
16 (Z0~Z15) 

Special data register 512 (SD0~SD511) 
 
 
 
 
 

Interrupt Resources 

External input 
interrupt 

 
16 (trigger edge settable, for X0~X7 rising/falling edges) 

High-speed counter 
interrupt 

 
8 

Internal timing 
interrupt 

 
3 

Serial interrupt 6 
PTO output 
completion interrupt 

 
3 

High-speed 
comparison interrupt 

 
8 

 
 

Communication 

Ports 1 RS232(COM0) 
1 RS485(COM1) 

Protocol Modbus, free port, 

 
 

Special Functions 

High-speed counter X0~X7 X1/X2: 50kHz，X2-X7:10kHz  

Total input frequency: <60kHz 
High-speed pulse 
output 

 
Y0~Y7 Y0/Y1/Y2: mx. 100kHz 

Y4-Y7: normal output 
Digital filtering X0~X7 use digital filtering, 0-60ms 

 
Subroutine call Up to 64 user subroutines, with 6-level nesting. Local variables support, max. 16 

parameter passes per subroutine, and variable aliases supported 
 
 

 
Special Functions 

 
User program 
protection 

Upload password  
3 formats, ≤8 alphanumeric characters, case-sensitive Download password 

Clock password 
Subroutine encryption ≤16 alphanumeric characters, case-sensitive 
Other protection Format and upload inhibition supported 

 
Programming 

AutoSoft 
programming 
software 

 
Run on IBM PC or compatible PC 

 



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

3 
 

(II) SH300 Series Specifications 

 

 

 

 

Table 1-1 SH300 Series Product Specifications 

Name Specification/Description 

I/O Configuration 

Max. I/O points 512 (256 input/256 output) 

Extension module 
qty. 

Total I/O and special modules ≤ 16 

User File Capacity 

User program 
capacity 

200K steps 

Data capacity 
128K Bytes for user soft components, ~84K Bytes battery-backed; 

1M Bytes for custom variables, 128K Bytes battery-backed 

Data block size 8000 D components, 32K R components 

Command 
Processing Speed 

Basic commands 0.039μs/each 

Application 
commands 

A few μs to several hundred μs/each 

Soft Component 
Resources 

I/O points 512 input/512 output (X0~X777 input, Y0~Y777 output) 

Auxiliary relay 10240 (M0~M10239) 

Local auxiliary relay 64 (LM0~LM63) 

Special auxiliary 
relay 

1024 (SM0~SM1023) 

Status relay 4096 (S0~S4095) 

Timer 

512 (T0~T511) 
(1) 100ms accuracy: T0~T209 
(2) 10ms accuracy: T210~T255 
(3) 1ms accuracy: T256~T511 
(4) 1ms accuracy: DTON/DTOF/DTACR (function blocks) 

Counter 

264 (C0~C263) 
(1) 16-bit increment counter: C0~C199 

(2) 32-bit increment/decrement counter: C200~C235 
(3) 32-bit high-speed counter: C236~C263 

Data register 8000 (D0~D7999), 32768 (R0~R32767), 32768 (W0~W32767) 

Local data register 64 (V0~V63) 

Variable addressing 
register 

16 (Z0~Z15) 

Special data register 1024 (SD0~SD1023) 

Interrupt Resources 

External input 
interrupt 

16 (trigger edge settable, for X0~X7 rising/falling edges) 

High-speed counter 
interrupt 

8 

Internal timing 

interrupt 
3 

Serial interrupt 6 

PTO output 
completion interrupt 

8 

High-speed 
comparison interrupt 

16 (for local counter commands) 

Communication 

Ports 
1×asynchronous serial port (0): RS485, 1×USB port, 
1×CAN port, 2×Ethernet ports, 
2×extended serial ports (RS-485) 

Protocol 
Modbus, free port, 
N:N (SLANVERT dedicated), supports 1:N and N:N networks 

Special Functions 

High-speed counter X0~X7 200kHz * 8 channels 

High-speed pulse 
output 

Y0~Y7 
200kHz * 8 independent channels (transistor output type 
only) 

Digital filtering X0~X7 use digital filtering, others use hardware filtering 

Subroutine call 
Up to 64 user subroutines, with 6-level nesting. Local variables support, max. 16 
parameter passes per subroutine, and variable aliases supported 

Special Functions 

User program 
protection 

Upload password 

3 formats, ≤8 alphanumeric characters, case-sensitive Download password 

Clock password 

Subroutine encryption ≤16 alphanumeric characters, case-sensitive 

Other protection Format and upload inhibition supported 

Programming 
AutoSoft 
programming 
software  

Run on IBM PC or compatible PC 



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

4 
 

(Ⅲ) SH500 Series Specifications 

1.1.4 Networking Solutions 
(I) SH300 Series Networking Solutions 

Table 1-2 SH500 Series Product Specifications 

Name Specification/Description 

I/O Configuration 
Max. I/O points 512 (256 input/256 output) 

Extension module qty. Total I/O and special modules ≤ 16 

User File Capacity 

User program capacity 200K steps 

Data capacity 
128K Bytes for user soft components, ~84K Bytes battery-backed; 
1M Bytes for custom variables, 128K Bytes battery-backed 

Data block size 8000 D components, 32K R components 

Command 
Processing Speed 

Basic commands 0.039μs/each 

Application commands A few μs to several hundred μs/each 

Soft Component 

Resources 

I/O points 512 input/512 output (X0~X777 input, Y0~Y777 output) 

Auxiliary relay 10240 (M0~M10239) 

Local auxiliary relay 64 (LM0~LM63) 

Special auxiliary relay 1024 (SM0~SM1023) 

Status relay 4096 (S0~S4095) 

Timer 

512 (T0~T511) 
(1) 100ms accuracy: T0~T209 
(2) 10ms accuracy: T210~T255 
(3) 1ms accuracy: T256~T511 
(4) 1ms accuracy: DTON/DTOF/DTACR (function blocks) 

Counter 

264 (C0~C263) 
(1) 16-bit increment counter: C0~C199 
(2) 32-bit increment/decrement counter: C200~C235 

(3) 32-bit high-speed counter: C236~C263 

Data register 8000 (D0~D7999), 32768 (R0~R32767), 32768 (W0~W32767) 

Local data register 64 (V0~V63) 

Variable addressing 
register 

16 (Z0~Z15) 

Special data register 1024 (SD0~SD1023) 

Interrupt Resources 

External input interrupt 16 (trigger edge settable, for X0~X7 rising/falling edges) 

High-speed counter 
interrupt 

8 

Internal timing interrupt 3 

Serial interrupt 6 

PTO output completion 
interrupt 

8 

High-speed comparison 
interrupt 

16 (for local counter commands) 

Communication 

Ports 

1×asynchronous serial port (0): RS485, 1×USB port, 
1×CAN port, 

2×Ethernet ports, 
2×extended serial ports (RS-485) 
1×EtherCAT communication port, supporting up to 48 real axes, 64 total real and 
virtual axes, and up to 72 EtherCAT slaves. 

Protocol 
Modbus, free port, 
N:N (SLANVERT dedicated), supports 1:N and N:N networks 

Special Functions 

High-speed counter X0~X7 200kHz * 8 channels 

High-speed pulse output Y0~Y7 
200kHz * 8 independent channels (transistor output type 
only) 

Digital filtering X0~X7 use digital filtering, others use hardware filtering 

Subroutine call 
Up to 64 user subroutines, with 6-level nesting. Local variables support, max. 16 
parameter passes per subroutine, and variable aliases supported 

Special Functions 

User program protection 

Upload password 

3 formats, ≤8 alphanumeric characters, case-sensitive 
Download 
password 

Clock password 

Subroutine 
encryption 

≤16 alphanumeric characters, case-sensitive 

Other protection Format and upload inhibition supported 

Programming 
AutoSoft 
programming 
software 

Run on IBM PC or compatible PC 



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

5 
 

The SH300 series features CAN, Ethernet, and RS485 interfaces for multilevel network communication, 

supporting diverse applications. It integrates 4 high-speed inputs and 4 high-speed outputs, enabling 4-axis pulse output 

control and 4-axis encoder counting, as shown in Figure 1-3. 

 
Figure 1-3 Typical Application Topology 

 

(II) SH500 Series Networking Solutions 

The SH500 series features EtherCAT, CAN, Ethernet, and RS485 interfaces for multilevel network 

communication, supporting diverse applications. It integrates 4 high-speed inputs and 4 high-speed outputs, enabling 

4-axis pulse output control and 4-axis encoder counting, as shown in Figure 1-4. 

 
Figure 1-4 Typical Application Topology 

  



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

6 
 

1.2 Software Acquisition and Installation 

1.2.1 Acquisition 
AutoSoft software is available free of charge, please log on to the official website of SLANVERT Electric 

(https://www.SLANVERT.com/en/), "Services and Support‑ Software Download", search for keywords and download 

the installation package. 

 

Note 

➢ SLANVERT continuously improves its products and updates technical data. For optimal application, please 

maintain current software versions and consulting the latest documentation as needed. 

 

1.2.2 Installation Requirements 
The PC for installing AutoSoft should meet the following specification: 

Item Specification 

OS Windows 7/10 (64-bit recommended) 

CPU Processor Speed 4GHz minimum 

Memory 4GB minimum 

HDD 5GB minimum 

 

1.2.3 Installation Steps 
Get the latest installation package from SLANVERT's official website. Here take installing 

VCPLC_Setup_V1.12.10.1 on Windows 10 as an example. 

(1) Unzip the "VCPLC_Setup_V1.12.10.1.zip" package. 

 
(2)  

 

 
 

 

(3) Click the “Next”. 

 

Double-click "AutoSOft_Setup_V1.0.exe", select language in the pop-up box, and then click “OK”.



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

7 
 

 
(4) Click the “Next”. 

 

 
 

(5) Click "Change" to select the installation path if needed (default recommended), and then click "Next". 

 

 
 

(6) Click the “Install”. 

 

 



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

8 
 

 
 

(7) Wait for the installation. 

 

 
 

(8) Then, a "USB Driver" dialog box will pop up, and click the “Next”. 

 
 

(9) After the "USB Driver" is installed, click "Finish" to complete the software installation. 

 



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

9 
 

 
 

1.2.4 Uninstallation Steps 
Take uninstalling VCPLC_Setup_V1.12.10.1 on Windows 10 as an example: 

(1) Click       on the desktop, then click        in the opened interface to access the "Windows Settings" interface. 

 

 
 

(2) Click "Apps" to open the "Settings" dialog. 

 

 
 

(3) Click "Uninstall" to open the "AutoSoft Uninstall Wizard" dialog. 



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

10 
 

 
 

(4) Locate and click "AutoSoft Vx.x.x.x" in the "Apps & Features" interface, then click "Uninstall", and wait 

for the uninstallation to complete. 

 
 

1.2.5 AutoSoft Main Interface 
The main interface consists of: Menu Bar, Toolbar, Project Manager, Program Editing Area, Instruction Tree 

Window, Output Window, Status Bar. 

 

 
Description of software main interface: 

No. Function Description 

① Program Editing 

Area 

Edits user programs. 

② Project Manager Includes parameter management, variable management, program management, 



General                                                                                                  SH100/300/SH500 PLC Programming and Application Manual  

11 
 

Area and configuration management for PLC projects. 

③ Toolbar Provides shortcuts for file management and programming/debugging tools. 

④ Menu Bar Contains settings for programming, debugging, communication, etc. 

⑤ Instruction Tree Displays loaded slaves and instruction sets supported by the selected PLC. It 

includes Ladder Diagram and ST toolboxes, which switch based on the current 

editing interface. The toolboxes differ only in their supported instruction sets. 

⑥ Output Window Displays compilation status, communication status, find results, etc. 

⑦ Status Bar Shows PLC status, fault status, PLC firmware version, scan cycle, etc. 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

- 12 - 
 

2 QuickStart 

2.1 General 

This section helps users quickly grasp programming and debugging through simple examples and instructions of 

common programming and debugging functions. 

2.2 PC-PLC Communication Connection 

2.2.1 Overview 
A PC with AutoSoft can communicate with a PLC via USB or Ethernet for program upload/download, monitoring, 

and debugging. Ethernet-based connection supports hub/switch connections or direct links, enabling both multidrop 

networks and dedicated point-to-point configurations. 

 

2.2.2 Ethernet-based Connection 
Ethernet-based PC-PLC communication requires target PLC selection and IP/device name configuration. 

 

 
Target PLC Connection 

Target PLC connection via Ethernet involves two configuration scenarios. 

(1) If the PLC IP is known, configure the communication type and device IP, then connect. 

1. Connect the PLC to the PC with an Ethernet cable. 

2. Double-click the “AutoSoft” shortcut to open it. 

3. Navigate to Tools > PLC Communication > Connection Settings in the menu bar, or click       in the toolbar 

to open the “Connect” box. 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

- 13 - 
 

 
 

4. Configure parameters in the “Connect” box: 

■Select “Ethernet” and set the connected net card; 

■Enter the PLC’s IP address in “Device IP”. 

■Click “OK” to check connection success. 

 

Note: 

➢ Click “PING” to test the network connection between the PC and PLC. 

➢ Confirm the PC's IP resides in the same subnet. 

➢ Select the correct network address if multiple exist. 

 

(2) If the PLC IP is unknown, use the search function to find the target PLC device. 

1. Connect the PLC to the PC with an Ethernet cable. 

2. Double-click the “AutoSoft” shortcut to open it. 

3. Navigate to Tools > PLC Communication in the menu bar, or click in the toolbar to open the “Connect” 

box. 

 

 
 

4. Select “Ethernet” in “Connect” box and click “Search” to find PLCs on the local network. 

 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

- 14 - 
 

 
■When the PLC and PC are connected through a switch, only PLCs in the same subnet as the PC can be found. 

■When the PLC and PC are directly connected via an Ethernet cable, PLCs in the same or different subnets can 

be found. 

 

5. Select the target IP from the search results and click “OK” to auto-fill it to the “Remote IP” field. Click 

“OK” again to establish the connection. 

 

Note: 

➢ Click “PING” to test the network connection between the PC and PLC. 

 

PLC IP Address/Name Modification 

Users can modify the PLCs’ IP address and name as needed to differentiate them. 

1. After connecting to the target PLC, click the “PLC(P)” in the menu bar, then click “PLC Name Setting”, enter 

the new device name, and click “OK”. 

 

2.2.3 USB-based Connection 
 

Target PLC Connection 

1. Connect the PLC to the PC with an USB cable. 

2. Double-click the “AutoSoft” icon to open it. 

3. Navigate to Tools > PLC Communication in the menu bar, or click  in the toolbar to open the “Connect” 

box. 

 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

- 15 - 
 

 
 

4. Select “USB” in “Connect” box and click “OK” to check connection success. 

 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

16 
 

2.3 Programming Process 

The figure below illustrates the programming and debugging workflow for a typical SH500 series PLC 

application. 

Start

New SH500 Project

Target PLC 

Connection

Configuration

Skip this step if no configuration is needed.

Download, 

Monitoring and 

Debugging

End

Programming and 

Compilation

S
ave 

ran
g
e

S
et tim

e

In
p
u

t filter

O
utpu

t 

table

Inpu
t 

po
int

A
d
v
an

ced
 

settin
g
s

L
eft 

ex
ten

sio
n

E
xtension

  
 

Note: 

➢ *Configuration steps are optional when operating with the SH host unit alone. 

 

 

 

 

 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

17 
 

2.4 Programming Example 

2.4.1 Requirements 
Design two control buttons (X0 and X1): When X0 is pressed, Y0 output is ON; when X1 is pressed, Y0 

output is OFF. 

2.4.2 New Project 
1. Double-click the AutoSoft shortcut to open it. Click “File>New Project” in the menu bar or click  in the 

toolbar. 

 
 

2. Select the default editor and select SH523 as the PLC type in the pop-up box. Enter the project name and 

select the project location, then click “OK” to create the project and enter the main project interface. 

 

 
 

Note: 

➢ Projects created and saved with higher AutoSoft versions cannot be opened with lower versions. 

➢ Projects created with lower versions can be opened with higher versions, but their version will be upgraded 

and cannot be reopened with lower versions. 

2.4.3 Target PLC Connection 
Here take Ethernet-based connection as an example (refer to 2.2.2 Ethernet-based Connection for details). 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

18 
 

2.4.4 System Configuration (Optional) 
For SH523 PLC configuration (Saving Range, Constant Scanning Time Setting, Data Block Validity, Left/Right 

Extension Modules), modify settings in [Project Manager]>[System Block] and download to apply. Configuration of 

left/right extension modules requires auto-scan or manual module addition via [Project Manager]>[Extension 

Modules]. Skip this step if no configuration is needed. 

1. Unfold “System Block” in the Project Manager and configure as needed. 

 

 
 

2. Double-click “Extension Modules” in the Project Manager. 

 
 

 

 

 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

19 
 

3. Add modules by double-clicking it in the right “Module Tree” area according to the actual installation order. 

 

 
 

4. Double-click the added module to configure it. 

 

 
Exit the interface after configuration. 

2.4.5 Programming and Compilation 
1. Unfold the “Program Block” in the Project Manager, double-click “MAIN”, and write the program. 

 

 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

20 
 

 
Compilation information will be displayed at the bottom of the main interface after compilation.  



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

21 
 

2.4.6 Program Download and Debugging Monitoring 
1. Navigate to “PLC>Download” in the menu bar or click in the toolbar to download the program. If the 

PLC is running, click “OK” in the pop-up box. 

 
2. Then the Download box will pop up. 

 
3. After downloading, a prompt will ask whether to set the PLC to Run status; click “Yes”. 

 
4. Click “Debug>Monitor” in the menu bar or in the toolbar to monitoring program debugging. 



Quick Start                                                                                         SH100/300/SH500 PLC Programming and Application Manual 

22 
 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 23 - 
 

3 Software Model 

3.1 PLC Operation Mechanism 

The SH Series PLC operates on a scan cycle model, sequentially executing four cyclic tasks: 

 

User Program Execution

I/O Refresh Communication

Housekeeping

 
 

Figure 2-1 PLC Operation Mechanism 

1) User Program Execution 

Executes the user program’s command sequence sequentially, starting from the first main program command 

until the end command is executed. 

2) Communication 

Process programming commands (download/run/stop) from software. 

3) Housekeeping 

Handle system housekeeping, such as refreshing panel indicators, updating software timer values, and refreshing 

special auxiliary relays and data registers. 

4) I/O Refresh 

Include output and input stages. 

Output stage: Turn on or off hardware outputs based on Y-element states (ON/OFF). 

Input stage: Update X-element states (ON/OFF) from hardware input on/off status 

3.2 Constant Scanning Time Setting 

The constant scanning mode ensures fixed-duration scan cycles during PLC operation. Activate this mode and 

set the constant scanning time in the “Set Time” page under “System Block” in AutoSoft. The default value is 0 

(disabled); users can set it to 10ms, as shown below. 

 

 
 

 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 24 - 
 

Note: 

➢ The constant scanning time setting cannot be larger than the watchdog time. 

➢ If the actual scan time exceeds the set value, the program will run according to the actual scan time. 

3.3 User Program Watchdog 

The watchdog timer monitors program execution time per scan cycle. If it exceeds the set value, the system 

stops and then restarts the user program. Set the watchdog time in the “Set Time” page under “System Block” in 

AutoSoft. 

 
 

3.4 User File Download/Storage 

Users can program and control the main module by downloading specific user files. 

(1) These files include four types: Program Block files, Data Block files, System Block files, and user auxiliary 

information files (containing global variable tables and user data source files). 

(2) When selecting Program/Data/System Block files for download, related user auxiliary information files 

will be automatically bundled and downloaded together. 

 

3.5 Element Value Initialization 

During the STOP→RUN transition, PLC initializes soft elements using the following data sources in priority 

order: Table 3-1 Initialization Priority Order for PLC RUN Mode 

Memory Type Power OFF→ON STOP→RUN 

Power-down save value Highest Highest 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 25 - 
 

Data blocks* Medium Medium 

Element value retained* — Low 

*Requires corresponding options enabled in System Block > Advanced Settings. 

3.6 User Program Security 

PLC implements multi-level security strategies for program protection:  

 

 
Description of user program security settings: 

Function Description 

PLC Format 

Prohibited 

Enabling and downloading "PLC Format Prohibited" in the System Block prevents 

deletion of user programs, system blocks, or data blocks via formatting. To disable this 

function, re-download a new system block without this restriction. 

Download Password Restricts access to the download function. 

Upload Prohibited 

Enabling "Upload Prohibited" during download blocks program upload even with a 

valid password. 

To disable this function, re-download user data and select "Allow Upload" in the 

download box. 

Upload Password Restricts access to the upload function. 

Clock Password Restricts access to the clock setting. 

Program Password 

Encrypts main/sub/interrupt programs.  Encrypted programs cannot be viewed/edited 

without the correct password. 

Encryption: Right-click the program → Encrypt/Decrypt → Set password. 

Decryption: Right-click the program → Encrypt/Decrypt → Enter password. 

  

Note: 

➢ 5 consecutive failed password attempts will trigger a 5-minute lockout on SH-series PLCs. 

3.7 System Configuration 

Power Failure Data Retention Settings 

1) Trigger Condition 

Upon detecting a power failure, the system stops the user program and saves the element data within the 

specified range in the System Block to the power failure backup file. 

2) Data Recovery on Power-Up 

If the backup file is valid after power-on, the specified elements' values are restored to their last saved state. 

Elements outside the save range are cleared. If the backup file is missing or corrupted, all elements are cleared. 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 26 - 
 

3) Range Configuration 

Configure element saving range in System Block > Saving Range, as shown below. 

 

 
 

Note: 

➢ For the SH100/300/500 series PLCs, element data is saved in non-volatile memory. 

 

3.7.1 Input Filter 
The main module's input points (X0~X7) feature digital filtering to remove interference signals. Adjust the input 

filter constant via the System Block> Input Filter, as shown below.  

 

 
 

3.7.2 No Battery Mode 
 

The SH series main module support operation without a battery or under low battery voltage. In this mode, 

battery-related errors will not be reported.  

 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 27 - 
 

 
 

3.7.3 Data Block Configuration 
A data block sets default values for D/R elements. After compilation and download to PLC, PLC initializes D/R 

elements using these values during startup. 

Configuration Steps: 

1. Click Data Block in the Project Manager to create a data block. 

2. Assign initial values to D/R registers (data memory) in the data block editor. Users can assign values to words or 

double words, but not bytes. To add comments, put double-slash before a string. 

3. Click System Block>Advanced Settings, and check Datablock valid. 

4. Compile and check Initialize Variables in the download box.  

 

 

 
 

Note: 

➢ Follow steps 1-4 to activate the data block. 

➢ Values are assigned only during download. 

➢ No register address overlap in data blocks; or compilation errors will be reported. 

 

3.7.4 Element Comment 
Element comments assign meaningful symbolic names to PLC addresses, accessible project-wide as global 

variables. These symbols are defined in a global variable table containing three attributes: Variable Name, Variable 

Address, and Comments. 

1) Comment Definition Rules: 

Combine letters (A~Z, a~z), numbers (0~9), underscores, or Chinese characters; 

Cannot start with a number or be numeric-only; Case-insensitive, ≤8 bytes; 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 28 - 
 

Avoid element type letters+numbers; avoid reserved keywords: e.g., data types, command names, or 

operators; 

No spaces allowed in variable names. 

 

 

 
 

2) Element Comment Import/Export 

Users can export all element comments or selected element-type comments, as shown below. 

 

 

 
 

 

3) For batch element commenting: Right-click and select "Export" to export a .csv file, edit it, save, and then 

close it. Then right-click and select "Import" to import the edited file.  

 

 
 

 

 

Note: 

➢ SH300/SH500 series support a maximum of 20K global variables. 

 

3.7.5 Large/Small End Mode 
Data storage supports large end mode and small end mode. SH300/500 series allow mode selection via system 

configuration, with small end mode defaulted. Users can set it by "Project Manager > System Block > Advanced 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 29 - 
 

Settings” and check “Large end mode”, as shown below. 

 

 
 

⚫ Large end mode: The high bytes of data are saved at low addresses in memory, and the low bytes of data 

are saved at high addresses in memory. 

⚫ Small end mode: The high bytes of data are saved at high addresses in memory, and the low bytes of data 

are saved at low addresses in memory. 

 

D0D1=16#12345678 

Memory address D0 D1 

Large end mode D0=16#1234 D1=16#5678 

Small end mode D0=16#5678 D1=16#1234 

 

Note: 

➢ For SH300/500 series, 16-bit data byte retains small end mode by default. Enabling large end mode affects 32-

bit data byte order only, not 16-bit data byte. 

3.8 Operation and Status Control 

The PLC can enter or exit the RUN state through three methods: 

1. DIP switch; 

2. Designated terminals (X00~X17), by setting System Block>Input Point>Input point On mode>Input point; 

3. Programming software, if the DIP switch is set at ON position. 

3.8.1 Run/Stop States 
1) RUN 

When the main module is in the running state, the whole scan cycle is executed: Execute user program → 

Communication → Housekeeping → I/O refresh. 

2) STOP 

When the main module is in the stop state, the system does not execute user program, but Communication → 

Housekeeping → I/O refresh are still executed. 

3.8.2 State Transition 
1) STOP→RUN 

1. Reset 

Set the DIP switch to ON position. After reset (including power-on reset), the system runs automatically. 

Note: 

➢ If input point control is enabled in the system block, the designated input point must be ON; otherwise, the 

transition fails. 

2. Manual operation 

Toggle the DIP switch from OFF to ON during STOP. 

3. Input point ON mode 

When this function is valid and the system is in STOP status, if the status change of the input point (X0~X17) 

from OFF to ON is detected, the system enters into RUN status. 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 30 - 
 

 
 

 

Note: 

➢ The DIP switch must be set at ON position for this method to work. 

 

2) RUN→STOP 

1. Reset 

Set the DIP switch to OFF position. After reset (including power-on reset), the system stops automatically. 

Note: 

➢ If input point control is enabled and the designated input point is OFF, the system enters STOP after reset even 

if the DIP switch at ON position. 

2. Manual operation 

Toggle the DIP switch from ON to OFF during RUN. 

3. Command control 

Execute the STOP command in the user program. 

4. Error-induced stop 

The system stops automatically upon critical errors (e.g., user program errors, user program timeout) detected. 

 

3.8.3 Output Point Status in Stop State 
The user can set the output status of output points (Y0–Y17) during STOP, with three modes selectable: 

 

 
 

1. Disable - All output points are OFF in the STOP state. 

2. Freeze - All output points remain their pre-STOP values in the STOP state. 

3. Configuration - Users can set the output values of output points as needed in the System Block>Output 

Table. 

3.9 System Debugging 

3.9.1 Program Upload/Download 
1) Download 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 31 - 
 

Download the system block, data block, and user program generated by AutoSoft software to the PLC via 

serial/USB/Ethernet. The PLC must be in a stopped state during download.  

 
If a download password is set and not entered after software launch, a password window will pop up. Correct 

password initiates download; incorrect password prompts re-entry. Click the Cancel to exit the download. 

 
2) Upload 

Upload the PLC's system block, data block, and user program to the computer via serial/USB/Ethernet, and 

create a new project to storage it. When battery-backed data is valid, relevant user auxiliary info files are also 

uploaded, as shown below.  

 
When uploading, if no password is set, the program can be directly uploaded. If a password is set and not entered 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 32 - 
 

after software launch, a password window will pop up. Correct password starts upload; incorrect password returns to 

the upload dialog box. 

If "Upload Prohibited" is enabled during program download, the PLC cannot upload programs afterwards unless 

the correct password is entered to disable this restriction. 

3.9.2 Element Memory Table 
Upload element memory table: Upload the current D/R/W/M element values from the PLC. Upon successful 

upload, a DATA1 table will be automatically generated under "Project Manager > Element Memory Table", 

recording the uploaded element data values, as shown below. 

 

 
 

Download element memory table: When downloading the program, check the "Element Memory Table” and 

select required D/R/W/M element memory tables. The selected tables will be automatically written to the PLC upon 

successful download, as shown below. 

 

 

 
 

3.9.3 Online Clock Settings 
Access PLC > PLC Clock in the menu bar to synchronize the PLC's SD time register with the local computer 

time. Refer to the illustration below for details. 

 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 33 - 
 

 

3.9.4 Online Modification 
This function allows online modification to the PLC program during operation. 

Warning: 

➢ Authorize only qualified personnel to perform online modifications, adhering to safety protocols to prevent 

injury and equipment damage. 

1) Steps 

Ensure the software maintains active communication with the PLC hardware, and the PLC is in RUN mode. 

Click Debug->Online Modification to switch to the online modification state. 

Then users can modify the main program, subroutine, and interrupt subroutine contents directly. After 

modifications, click PLC->Download. The software will compile all programs in the current project and 

automatically download them to the PLC hardware. The PLC will then execute the revised program. 

2) Modification Restrictions 

Unsupported Operations 

①Program file management: 

   • Adding/deleting files 

   • Renaming files 

   • Attribute modification 

②Subroutine encryption/decryption 

③Configuration changes 

 

Global Variables: 
- Supported: Variable additions/deletions; modification of variable names or comments 

- Unsupported: Modification of attributes other than variable names or comments 

 

 

FB/FC Local Variables: 

- Unsupported: IN/INOUT/OUT-type variables additions/modifications/deletions 

- Supported: VAR-type variable additions/deletions 

 

VAR Variables: 

- Added before current cycle: 

 - Name/comment modifications supported only 

- Added during current cycle: 

 - Full attribute modifications enabled 

 

 

  



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 34 - 
 

3.9.5 Sequence Monitor 
This oscilloscope-like tool captures variable value changes in real time for PLC debugging and operational 

analysis. Access via Tool>Sequence Monitor in the menu bar, as shown below. 

 

 
(I) Features 

(1) USB/Ethernet connection support 

(2) Exclusive communication protocol (incompatible with AutoSoft)  (! CAUTION) 

(3) Up to 6-channel concurrent monitoring, with a minimum sampling cycle of 1ms 

(4) Waveform import/export capability 

(5) Independent/overlapping channel display (via “Branch”) 

(6) Axis scaling: Ctrl+roll (vertical), roll (horizontal) 

(7) Sampling trigger functionality 

(II) Setup Workflow 

Click the Tool > Sequence Monitor in the menu bar to open the sequence monitor chart. 

1. Click the Communicate, select USB or Ethernet, and click OK, as shown below. 

 
2. After a successful connection, manually input target variables and select the data type, as shown below. 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 35 - 
 

 
3. Then run it.  

 

3.9.6 Program Clear/Format 
This function includes: Clear PLC Error, Clear PLC Element Value, Clear PLC Program, Clear PLC Datablock, 

and PLC Format, as shown below. 

 
Description of program clear/format 

Function Description 

Clear PLC Element 

Value 

Clears all element values in the PLC; requires PLC in STOP mode. This may cause 

operation errors or data loss; please use with caution. To prevent accidental operation, the 

software will pop up a confirmation window before execution. 

Clear PLC Program Clears user programs in the PLC; requires PLC in STOP mode. After this, the PLC won't 

execute any user program; please use with caution. To prevent accidental operation, the 

software will pop up a confirmation window before execution. 

Clear PLC 

Datablock 

Clears all data block settings in the PLC; requires PLC in STOP mode. After this, the PLC 

won't use preset data block values to initialize D elements; please use with caution. To 

prevent accidental operation, the software will pop up a confirmation window before 

execution. 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 36 - 
 

PLC Format Formats all PLC data, including clearing user program, restoring default settings, and 

clearing data blocks; requires PLC in STOP mode. 

All downloaded and set data will be lost after this; please use with caution. To prevent 

accidental operation, the software will pop up a confirmation window before execution. 

Clear PLC Error Clears current PLC error information. 

3.9.7 Fault Diagnostics 
The system detects and reports the system error and user program execution error. 

1. System error is caused by abnormal system operation, 

2. and user program execution error is triggered by abnormal program execution. 

All errors are uniquely numbered, with each error code representing a specific fault. For details, refer to 16 Error 

Codes. 

 

1) System Error Report 

When a system error is detected, the error code is recorded in special data register SD3 and special relay SM3 

is triggered. Read the error code from SD3 to identify the error. 

In case of concurrent errors, the highest priority error is stored in SD3. 

Critical system errors will halt user program execution and cause the ERR indicator on the main module ON. 

2) Program Execution Error Report 

When a user program execution error occurs, special relay SM20 is triggered, and the error code is stored in 

special data register SD20.  

SM20 resets after successful execution of the next command, while SD20 retains the last error code. 

The system logs execution errors using a stack structure: Special data registers SD20~SD24 form a 5-level error 

stack storing the last five errors. 

When a new error occurs and its code differs from the one in SD20, it is pushed into the stack, as illustrated 

below. 

New user program error

Error log 0

Error log 1

Error log 2

Error log 3

Error log 4

Discard  
 

Figure 2-12 Error Code Stack Operation 

Critical execution errors will halt program execution and cause the ERR indicator on the main module ON, 

while non-critical errors do not trigger the indicator. 

3) View of Error Information 

When the PLC is online, view PLC fault diagnostics in AutoSoft via “Current Fault” or “History Fault” menus 

with error codes and descriptions. Click Debug > Current Fault/History Fault in the menu bar. Double-clicking any 

entry will navigate to the error location in the program. This is shown in the figure below: 

 



Software Model                                                                                  SH100/300/SH500 PLC Programming and Application Manual 

- 37 - 
 

 
 

3.9.8 PLC Information 
Navigate to PLC > PLC Information in the menu bar to view current PLC software specifications: PLC model, 

MCU firmware version, FPGA version, high-speed output channels, MAC address, CAN baud rate, current scan 

cycle, runtime error status, program capacity, operational status, battery voltage, local I/O points, extended I/O points, 

and left/right extension module types, as shown below. 

 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 38 - 
 

4 Programming Basics 

4.1 Overview 

In system development, PLC supports three variable memory structures including soft elements, custom 

variables, and system variables. The operation rules are summarized as follows: 

 

  
SH300/SH500 Memory Architecture 

Memory Space Description Operation Rule 

Soft elements (~1.2MB) Supports 

X/Y/M/SM/L/S/T/C/D/R/W/SD/Z/V element 

types 

No definition required; directly 

accessible in user programs 

Custom variables 

(16MB) 

Retentive: 2MB (131,072 words) 

Non-retentive: 14MB (917,504 words) 

Requires definition in Variable 

Table; 

Supported types: 

BOOL, INT, DINT, RELA, 

Array, Pointer, Struct, String 

Pointer variables 

(128KB) 

Max. 4,096 pointers Requires definition in Variable 

Table prior to use. 

System variables / For accessing axis data structures, 

etc. 

 

4.2 Soft Elements 

4.2.1 Bit Soft Elements 
PLC programming supports bit-soft elements. Specifications including types, ranges, points, and related 

descriptions are shown below: 

Type Range Points Data Type Description 

X X0~X1777 1024 (octal) BOOL Input 

Y Y0~Y1777 1024 (octal) BOOL Output 

M M0~M10247 10248 BOOL Auxiliary relay 

S S0~S4095 4096 BOOL Status relay 

LM LM0~LM63 64 BOOL Local auxiliary relay 

SM SM0~SM1023 1024 BOOL Special auxiliary relay 

C C0~C263 264 BOOL Counter 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 39 - 
 

 

Note: 

➢ X points reflect physical input terminal states, while Y points represent physical output terminal states; 

➢ All bit-soft elements operate as BOOL types for input/output parameters in BOOL-type instructions 

 

4.2.2 Word Soft Elements 
PLC programming supports word-soft elements. Specifications including types, ranges, points, and related 

descriptions are shown below: 

 

Type Range Points Data Type Description 

D D0~D7999 8000 BOOL/INT/DINT/REAL 
Configurable power-down save 

range 

R R0~R32767 32768 BOOL/INT/DINT/REAL 
Configurable power-failure 

retention range 

W W0~W32767 32768 BOOL/INT/DINT/REAL No power-down save 

C C0~C263 264 BOOL/INT/DINT 

C0~C199: 16-bit counter; 

C200~C235: 32-bit 

bidirectional counter; 

C236~C263: 32-bit high-speed 

counter 

T T0~T511 512 BOOL/INT 

T0~T209: 100ms resolution 

T210~T255: 10ms resolution 

T256~T511: 1ms resolution 

V V0~V63 64 INT Local variable register 

Z Z0~Z15 16 INT Variable addressing register 

SD SD0~SD1023 1024 INT/DINT/REAL Special auxiliary register 

KnXX* Up to XX Up to XX INT/DINT 

Example: 

K4M0: 16-bit address 

(M0~M15); 

K8M0: 32-bit address 

(M0~M31) 

KnXX denotes bit address 

*: XX: X/Y/M/SM/L/S bit addresses 

Kn: Bit address grouping notation 

 

Element Usage Descriptions 

⚫ The range of power-down save can be configured via the System Block. 

⚫ Word soft elements can be used as integers or floating-point numbers. They lack inherent data type attribute and 

resolve based on parameter attributes of the instruction. 

⚫ When used as integers, word soft elements can be 16-bit (occupies single soft element) or 32-bit (occupies two 

soft elements). As floating-point numbers, they occupie 2 elements. 

 

Example: 

1) 16-bit integer operation: Execute 16-bit MOVE instruction: D10 ← 200 (occupies D10) 

 
2) 32-bit integer operation: Execute 32-bit MOVE instruction: D10 ← 200 (occupies D10 [low-order] + D11 

[high-order]) 

T T0~T512 512 BOOL Timer 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 40 - 
 

 
3) Floating-point number operation: Execute REAL MOVE instruction: D100 ← 100.0 (occupies 

D100+D101) 

 
 

4) Word elements support direct bit manipulation via . notation. For example, programming D0.5 sets bit 5 of 

the D0 word element to ON. 

 
5) The V soft elements can be used in the main program and subroutines as locally scoped variables valid 

within independent program blocks. Note: V elements are non-monitorable during program execution. 

 
6) The Z elements enable indirect addressing of bit or word elements. Note: When using indexing, avoid 

address out-of-bounds (e.g., maximum address for D devices is D7999). Example: If Z1=10, when M1 

turns ON, the value 500 is transferred to register D(300+Z1)=D310. (Note: X and Y are octal. If Z0=8 and 

M0 is ON, Y(0+Z0)=Y10).  

 
 

7) The KnXX format combines bit elements into 16-bit or 32-bit words. Example: When M6 is ON, the 16-

bit value of M100~M115 is transferred to register D500 (using K4M100); When M7 is ON, the 32-bit value 

of M100~M131 is transferred to register D600 (using K8M100). 

 
8) D0~D255 can serve as index registers for indirect addressing, functionally identical to Z registers. Example: 

When D1=10 and M9 is ON, transfer value 1000 to register D(500+D0)=D510. 

 

4.3 Data Type 

All instruction operands possess defined data type attributes. The four supported data types are specified below. 

(I) Operand Data Types 

 

(II) Element-Data Type Matching 

Instruction operands must maintain compatibility between element types and data types. The matching 

relationships are specified in the following table. 

Element-Data Type Matching Relationships 

Data Type Description Width Range 

BOOL Bit 1 1 (ON)/0 (OFF) 

INT Integer 16 -32768~32767 

DINT 
Double-length 

integer 
32 -2147483648~2147483647 

REAL Floating point 32 ±1.175494E-38~±3.402823E＋38 

Data Type Soft Elements 

BOOL X Y M S LM SM    C T     



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 41 - 
 

 

When an instruction's operand type conflicts with its data type requirement, the instruction becomes invalid. For 

example, "MOV 10 X0" is invalid as MOV is an integer-type operand while X0 is a BOOL-type element. 

Note: 

➢ INT-type operands accept: KnX, KnY, KnM, KnS, KnLM, KnSM (1≤n≤4) 

➢ DINT-type operands accept: KnX, KnY, KnM, KnS, KnLM, KnSM (5≤n≤8) 

➢ INT-type counters: C0~C199 

➢ DINT-type counters: C200~C263 

 

4.3.1 Constant 
Constants may be used as instruction operands. The SH-series PLC supports multiple constant formats: 

Table 4-1 Constant Formats 

 

4.3.2 Variables 
AutoSoft programming supports both direct addressing (X, Y, M, D, R, W elements) and custom variables for 

implementing control logic or complex control sequences, improving code maintainability and readability. 

Table 4-2 Supported Custom Variables 

Type Capacity Data Type Description 

BOOL  

Custom variables 

(16MB) 

BOOL, INT, DINT, RELA, 

Array, Pointer, Struct, String 

Retentive: 2MB (131,072 words) 

Non-retentive: 14MB (917,504 words) INT 

DINT 

REAL 

STRING 

Pointer 4096 BOOL/INT/DINT/REAL Non-retentive 

 

4.4 Custom Variables 

Users can define global variables for programming. Global variable naming must comply with the following 

rules: 

⚫ May contain underscores (_), letters, numbers, or Chinese characters, but cannot start with underscores or 

Data Type Soft Elements 

INT 
Const

ant 
KnX KnY KnM KnS KnLM KnSM D SD C T V Z R W 

DINT 
Const

ant 
KnX KnY KnM KnS KnLM KnSM D SD C  V  R W 

REAL 
Const

ant 
      D    V  R W 

Constant Type Example Format Valid Range Comments 

16-bit signed decimal 

integer 
8949 -32768~32767 / 

32-bit signed decimal 

integer 
2147483646 -2147483648~2147483647 / 

16-bit hexadecimal 16#1FE9 16#0~16#FFFF 

Sign interpretation depends 

on operand data type. 

Applies to hex/octal/binary 

constants. 

 

32-bit hexadecimal 16#FD1EAFE9 16#0~16#FFFFFFFF 

16-bit octal 8#7173 8#0~8#177777 

32-bit octal 8#71732 8#0~8#37777777777 

16-bit binary 2#10111001 2#0~2#1111111111111111 

32-bit binary 2#101110011111 
2#0~2#1111111111111111 

1111111111111111 

Single-precision float point 
-3.1415E-16 

3.1415E＋30.016 

±1.175494E-38~±3.402823E

＋38 

IEEE 754 compliant. 

Precision loss may occur 

(e.g., 1234567.89 stored as 

1234567.9 in D0). 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 42 - 
 

numbers. 

⚫ Must not conflict with reserved elements (soft elements, constants, standard data types, instructions, 

subroutines, interrupt subroutines, or MC instructions). 

⚫ Prohibited keywords include: ARRAY, TRUE, FALSE, ON, OFF, and NULL. 

(I) Variable Data Types 

Variables support structs and arrays. Supported data types are: 

Data Type Description 

BOOL Boolean 

INT Single-word integer 

DINT Double-word integer 

REAL Real number 

STRING String 

(II) Global Variables 

The "Global Variable” in the Project Manager area contains: System Variable, Element Comment, Struct, 

Function Block Data, and Variable Table. Variable Table manages custom variables and support multiple variable 

creation, modification, and deletion operations, as shown below. 

 

 

 
 

(III) Custom Variables 

Create a new Variable Table (VAR_1), double-click text fields and enter variable names, and select data types 

for it. 

 

 
 
1. Double-click text fields or use dropdown menus to edit it. 

2. Right-click and select "Insert Row” to add variables. 

3. Right-click target row and select "Delete Row” to delete variables. 

4. Export Variable Table for batch editing, and then import the Table. Close files before re-importing to avoid 

failures. 

5. Compile project before exporting HMI variables. 

 

Note: 

➢ Single table: Right-click target table and select "Export HMI Variable". 

➢ All variables: Right-click "Global Variable" and select "Export HMI Variable” to generate a unified HMI tag 

table. 

Custom Variable Table is shown in the figure below.  

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 43 - 
 

 
Description of Custom Variables 

 

4.5 Array Variable 

An array groups variables of the same type into an ordered collection. In programming, select the ARRAY as 

data type can define it to an array. 

1. Set the data type and number in the pop-up box, and then click OK. 

 
 

 

2. Double-click the “…” under “Initial Value” to modify initial values and note for individual variables, as 

shown below. 

Item Description 

Variable Name Name directly referenced in programming, following naming rules. 

Data Type 

BOOL/INT/DINT/REAL/STRING, including 

BOOL/INT/DINT/REAL/ DI arrays 

BOOL/INT/DINT/REAL/ structs 

For arrays, specify type and length via pop-up dialog box.  

For structs, use predefined struct variables. 

Initial Value Default value assignment. Supports element-specific initialization for arrays/structs. 

Data Hold 
Options: Hold/not hold. Initial values apply only to not hold variables. Note: Binding to 

element addresses inherits their retention properties. 

Element Address Bind to X/Y/M/S/D/R/W element addresses for shared address access.  

Authority 
Private: HMI variable export disabled. 

Public: Available for HMI tag communication. 

Size (bits) Displays allocated memory size based on data type. 

Note Optional descriptive notes for the variable. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 44 - 
 

 

 
 

When an instruction accesses an array without specifying an index, it starts at the first element. If an explicit 

index is provided, the instruction accesses the element at the specified index. (Note: Array indices begin at 0.) 

For example: 

1) When M10 is ON: Assign 10 consecutive elements from Array_0[0] to Array_0[9] to addresses 

D300~D309. 

 
 

2) When M11 is ON: Assign 5 consecutive elements from Array_0[5] to Array_0[9] to addresses D305~D309. 

 

 
 

4.6 Struct Variable 

A struct is a composite data type that groups multiple data types into a single variable. Each data unit within a 

struct is termed a member, which can be basic data types, arrays, pointers, or nested structs. 

Struct Creation 

1. In the Project Manager, right-click "Struct" and select "New Struct" to create a struct. 

 

 
 

2. Right-click the new struct to rename it (e.g., "Class_Student"), and double-click "Struct_Class_Student" to 

add its members.  



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 45 - 
 

 
 

3. Then select the “Struct” as the data type. Double-click the “…” to set initial values to its members, as 

shown in the figure below: 

 

 

 
4. Access struct members in programs follows the format: “<variable_name>.<member_name>”, as shown 

in the figure below. 

 

 
 

4.7 String Variable 

A string is a sequence of one or more characters (including numbers, letters, spaces, etc.), such as “This is an 

array of strings”. Note: Enclosing double quotes are not part of the string but indicate its boundaries to the compiler. 

String Creation 

1. String variables can be defined in either the Variable Table or Program interface. Select "STRING" from 

the Data Type dropdown menu, then specify the string length in the pop-up dialog box. The default length 

is 32 bytes (maximum 256 bytes), with the final byte reserved for the termination character.  

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 46 - 
 

 
 

2. Assign the string "abcdeef " to the string_TYPE variable as shown below:  

 
 

 

 

Guidelines: 

➢ Once declared, variables can be referenced by name directly in code without reallocating soft element addresses. 

➢ For standard variables, reference by name directly. 

➢ For array variables, access elements using [index] (indexing starts at 0). 

➢ For struct variables, access members via “struct_variable_name.member_variable”. 

4.8 Variable Address Binding 

4.8.1 Overview  
Custom variables can be bound to soft element addresses to establish shared memory locations. To implement 

binding, enter the target address in the “Element” column of the Variable Table, and compile the project. 

 
 

4.8.2 Variable Properties 
When bound to soft elements, custom variables inherit their “Data Hold” property. For example, as shown in 

the figure below, M0 is “Hold”, so the variable Test_M bound to it inherits the “Hold” property. Conversely, 

Test_Data bound to D320 inherits the “Not Hold” property. The variable's “Data Hold” property dynamically adjusts 

based on the bound soft element, determined by the user-configuration. 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 47 - 
 

 
 

4.8.3 Basic Variables Binding 
⚫ BOOL variables (1-bit length) can only be bound to bit elements; INT (16-bit) can be bound to a single word 

element; DINT and REAL (32-bit) can be bound to two consecutive word elements. 

⚫ STRING variables have user-defined lengths aligned to 2-byte boundaries. For example, a length of 5 occupies 

6 bytes. After bound to DO, it occupies D0, D1, and D2. 

4.8.4 Array Variables Binding 
To bind an array variable to soft elements, enter the address in the "Initial Value>Element" column of the 

variable table, as shown in the figure below 

 

 
⚫ Word-type variables occupy corresponding number of word elements: 

An INT variable (16-bit) occupies one 16-bit word element; a DINT or a REAL variable (32-bit) occupies two 

consecutive 16-bit word elements. 

⚫ STRING array variables maintain 2-byte alignment, occupying sequential word elements proportional to their 

length. 

⚫ BOOL array variables occupy the corresponding number of bit elements. 

⚫ Array variables can only bind to elements of matching types (word variables to word elements, bit variables to 

bit elements). 

Example: 

A BOOL array variable Array_0 (length 10) bound to M0 occupies M0–M9. 

An INT array variable Array_1 (length 10) bound to D0 occupies D0–D9. 

4.8.5 Struct Variables Binding 
To bind a struct variable to soft elements, enter the address (bit devices are invalid) in the "Initial 

Value>Element" column of the variable table. Then click "OK" to let AutoSoft automatically generate addresses for 

struct members, following rules below: 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 48 - 
 

 
(1) INT variables occupy one 16-bit word element; REAL and DINT variables occupy two consecutive 16-bit 

word elements. 

(2) Continuous BOOL members are aligned to 16-bit, starting from bit 0, with addresses incrementing by 1 bit; 

non-continuous BOOL members are independently aligned to 16-bit boundaries. 

(3) Array and struct variables are aligned to 16-bit boundaries as a whole. 

For example: When a struct variable Stru_Student_ID is bound to D600, the binding addresses are as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.9 Notes on Arrays 

4.9.1 Indexing Rules 
Only one variable can act as an array index within a single expression. Valid formats include array[index] or 

stru[index].var, where: 

array: An array or struct array; 

index, var, i: Variables; 

stru: A struct. 

4.9.2 Basic Indexing 
● For array variables, only bit, word, double-word, or floating-point arrays are supported, and pointer arrays are 

not supported. 

● For index variables (used as array index), only INT (16-bit) or DINT (32-bit) variables are allowed. Soft 

elements, bit variables, floating-point variables, and pointers are invalid. Index variables can be specific elements of 

an array or specific members of a struct (e.g., array[index[5]], array[stru.index]); not be array elements or struct 

members with variable indexes (e.g., array[index[i]], array[stru[i].index]). 

4.9.3 Complex Indexing 
● Using array elements as operands is supported, with the index variable placed last (e.g., array[index], 

stru.array[index], stru1[3].stru2.array[index], stru1.stru2.stru3.array[index]). 

● Using struct array members as operands is supported, with the index variable placed in the middle (e.g., 

stru[index].var, stru1[index].stru2.var, stru1.stru2[5].stru3[index].array[3]). 

● Struct arrays with dual/multiple nested variables are not supported (e.g., stru[index1].array[index2]). 

● Dual/multi dimensional arrays are not supported (e.g., array[index1][index2]). 

 

Notes: 

➢ The operands of ZSET/ZRST, PTxxx, and SFC instructions do not support arrays with variable indexing. 

➢ For instructions requiring consecutive array-type operands (e.g., BMOV), arr[index] is allowed, but 

stru[index].var (non-consecutive struct array elements) is invalid. Use loop instructions for non-consecutive 

No. Variable Name Data Type Element 

1 Name STRING (32 bytes) D600~D615 

2 Gender BOOL D616.0 

3 Age INT D617 

4 Height REAL D618 

5 Weight REAL D620 

6 Major STRING (32 bytes) D622~D637 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 49 - 
 

batch assignments. 

➢ Variable-indexed arrays are recommended for single-cycle instructions only. Avoid using them in multi-cycle 

instructions. If unavoidable, ensure strict control over logic and timing to prevent execution conflicts (e.g., pulse 

output axes during value transitions). 

4.9.4 Programming Example 
(I) Assigning Values to Array Elements 

When M8 turns ON, assign 200 to ARRY_INT[0] and set i = 1. On the next M8 trigger, assign 200 to 

ARRY_INT[1]. Execute the assigning for five times.  

 

 
 

(II) Modifying Struct Array Members 

When M10 turns ON, assign 600 to strContent[0].dData and set m = 1. On the next M10 trigger, assign 600 to 

strContent[1].dData. 

 

4.10 Pointer-Type Variables 

4.10.1 Definition 
A pointer represents a memory address, and pointer variables store memory addresses. They must be declared 

before storing addresses of other variables. To declare a pointer variable: Enter the variable name in the variable table, 

and select "POINTER" as the data type. The initial value is NULL, and data is “Not Hold”, as shown below. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 50 - 
 

 
 

Pointer-type variables support address operations and indirect addressing operations. Address Operations 

Instructions for pointer address operations are listed in the table below, enabling functions like address acquisition, 

offset calculation, and address comparison. 

Table 3-2 Address Operation Instructions 

Instruction Description 

PTGET Get pointer address (Single-word) 

DPTGET Get pointer address (Dual word) 

RPTGET Get pointer address (Floating point) 

PTINC Increment pointer address by 1 

PTDEC Decrement pointer address by 1 

PTADD Add offset to pointer address 

PTSUB Subtract offset from pointer address 

PT>, PT>=, PT<, PT<=, PT=, PT<> Pointer contact comparison (>, ≥, <, ≤, =, ≠) 

PTMOV Assign values to pointer variables 

 

Indirect Addressing: When pointer variables are used in instructions beyond explicit address operations (listed 

in dedicated tables), they perform indirect addressing on referenced elements or array variable values. In 

programming, this is denoted as “*pointer_var”. 

Examples: 

● Pointer address operation: PT0 points to address D200 

 
● Pointer indirect addressing: Adds the value at D200 (pointed to by PT0) to D300 and stores the result in D400 

 
 

Note: 

➢ The programming software automatically prepends “*” to pointer variables used in non-address operation 

instructions. Users may also manually add the “*” prefix. 

4.10.2 Address Pointed by Pointer Variables 
The address pointed to by a pointer variable can be acquired using the instruction PTGET. 

Example 

1. When the instruction's power flow is active, pointer variable PT0 points to D200, assigning the address of 

the D200 soft element to PT0. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 51 - 
 

 
2. Pointer variables can target bit elements (X, Y, M, S), word elements (D, R, W), or user-defined array 

variables. 

 

4.10.3 PT Pointer Address Operations 
After obtaining the pointer address, arithmetic operations (addition/subtraction) can be performed on the pointer 

variable address to offset the address of the targeted element. 

Example 1 (Single-word pointer) 

 
When M23 is ON, the address of the soft element pointed to by pointer variable PT0 is incremented by 1. For 

instance: If PT0 originally points to D200, after executing the PTINC instruction, PT0 points to D201. The system 

automatically adjusts the offset increment based on the type of the targeted element or array variable. 

 

 

 

 

 

 

 

Example 2 (Double-word pointer) 

 
 

When M23 is ON, the address of the soft element pointed to by pointer variable PT0 is decremented by 1. For 

instance: If PT0 originally points to D200, after executing the PTDEC instruction, PT0 points to D198. The system 

automatically adjusts the offset decrement based on the type of the targeted element or array variable. 

 

 

 

 

 

 

 

Example 3 (Pointer address) 

 
 

When M25 is ON, the PTADD instruction assigns the address of the soft element pointed to by PT0, incremented 

by 10, to PT9. For example: If PT0 originally points to D200, after executing PTADD, PT9 points to D210. 

 

 

 

 

 

 

Example 4 

Current PT0 Pointer After PTDEC Execution 

D200 D201 

M200 M201 

diVal[0] diVal[1] 

Current PT0 Pointer After PTDEC Execution 

D200 D198 

M200 M199 

diVal[5] diVal[4] 

Current PT0 Pointer After PTADD Execution 

D200 D210 

M200 M210 

diVal[5] diVal[15] 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 52 - 
 

 
 

When M28 is ON, the PTSUB instruction assigns the address of the soft element pointed to by PT0, decremented 

by 3, to PT9. For example: 

 

 

 

 

 

 

Note: 

➢ All the above examples require the PTGET instruction to first acquire the pointer address. When a pointer 

targets an array variable, ensure bounds checking is performed during address operations to prevent out-of-

range access. 

Example 5 

 
When M77 is ON, the PTLD> instruction checks if the address of pointer variable PT0 exceeds D200. If PT0 

points to D201, output M0 is set to ON. Similar comparison instructions (PT>=, PT<, PT<=, PT=, PT<>) enable 

pointer address checks. 

4.10.4 Indirect Addressing 
Once a pointer variable acquires an address through address operation instructions, it can be used in other 

instructions to perform indirect addressing on the soft element or array variable it points to. 

Example 

 
When the instruction's power flow is active, the value of the soft element pointed to by pointer variable PT0 is 

added to D300. For instance, if PT0 points to D200, the result is stored in D400 as D10+D100. 

Note: 

➢ To use a pointer variable for indirect addressing, a valid pointer address must first be obtained via pointer address 

operation instructions. 

 

4.11 System Variables 

4.11.1 Overview 
System Variables function enables monitoring of master status, slave status, and axis parameter information. 

System Variables Description 

_McAxis Data for motion control axes 

_ECATMaster EtherCAT master status 

_ECATSlave EtherCAT slave status 

 

4.11.2_McAxis Parameters 
Table 4-4 Axis Operation Status 

Name Data Description R/W 

Current PT0 Pointer After PTSUB Execution 

D200 D197 

M200 M197 

diVal[10] diVal[7] 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 53 - 
 

Type 

dPulsesPreCycle DINT Pulses per cycle (motor/encoder) W/R 

fDistancePreCycle REAL Distance per cycle (worktable) W/R 

dNumerator DINT Gear ratio numerator W/R 

dDenorminator DINT Gear ratio denominator W/R 

bDirection BOOL Direction W/R 

bSoftLimitEnable BOOL Software limit enable W/R 

fPLimit REAL Positive limit in linear mode W/R 

fNLimit REAL Negative limit in linear mode W/R 

iLineRotateMode INT 
Linear/rotational mode selection 

0: linear; 1: rotational 
W/R 

fRotation REAL Cycle in rotational mode W/R 

EncodeMode INT 
Encoder mode (valid in bus servo axis) 

1: absolute, 0: incremental 
W/R 

iHomeMethod INT Homing method W/R 

fHomeVelocity REAL Homing velocity W/R 

fHomeApproachVelocity REAL Homing approach velocity W/R 

fHomeAcceleration REAL Homing acceleration W/R 

iHomeTimeOut INT Homing timeout W/R 

bPLimitTerminalPolarity BOOL 
Positive limit terminal polarity (valid in local pulse 

axis) 
W/R 

bNLimitTerminalPolarity BOOL 
Negative limit terminal polarity (valid in local pulse 

axis) 
W/R 

bHomeTerminaPolarity BOOL Home terminal polarity (valid in local pulse axis) W/R 

iPLimitType INT 
Positive limit input type (valid in local pulse axis) 

0: X, 1: M, 2: S 
W/R 

iPLimitID INT 
Positive limit input number (valid in local pulse axis) 

X0~7/M0~M/S0~S 
W/R 

iNLimitType INT 
Negative limit input type (valid in local pulse axis) 

0: X, 1: M, 2: S 
W/R 

iNLimitID INT Negative limit input number (valid in local pulse axis) W/R 

iHomeInType INT 
Home input type (valid in local pulse axis) 

0: X, 1: M, 2: S 
W/R 

iHomeInID INT Home input number (valid in local pulse axis) W/R 

iEncoderInType INT Local encoder input type (valid in local encoder) W/R 

iEncoderRstInEn INT 
Local encoder reset input enable (valid in local 

encoder) 
W/R 

iEncoderRstInID INT Local encoder reset input ID (valid in local encoder) W/R 

iEncoderEnInEn INT 
Local encoder enable input enable (valid in local 

encoder) 
W/R 

iEncoderEnInID INT Local encoder enable input ID (valid in local encoder) W/R 

iEncoderPreSetInEn INT 
Local encoder preset input enable (valid in local 

encoder) 
W/R 

iEncoderPreSetInID INT Local encoder preset input ID (valid in local encoder) W/R 

iPluseMethod INT Pulse output method (valid in local pulse axis) W/R 

bTouchProbeEn0 BOOL Touch probe 0 input enable (valid in local pulse axis) W/R 

iTouchProbeID0 INT 
Touch probe 0 ID (valid in local pulse axis) 

0~7X0~7 
W/R 

bTouchProbeEn1 BOOL Touch probe 1 input enable (valid in local pulse axis) W/R 

iTouchProbeID1 INT 
Touch probe 1 ID (valid in local pulse axis) 

0~7X0~7 
W/R 

bCmpEnable BOOL Comparison output enable (valid in local pulse axis) W/R 

iCmpOutID INT 
Comparison output port ID (valid in local pulse axis) 

0~7: Y0~7 
W/R 

iCmpOutUnit INT Comparison output unit (valid in local pulse axis) W/R 

iCmpOutWidth INT Comparison output width (valid in local pulse axis) W/R 

fErrorStopDeceleration REAL Axis error stop deceleration W/R 

fFollowErrorWindow REAL Follow error window W/R 

fMaxVelocity REAL Maximum velocity W/R 

fMaxJerkVelocity REAL Maximum jerk velocity W/R 

fMaxAcc REAL Maximum acceleration W/R 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 54 - 
 

iMaxTorque INT Maximum torque W/R 

dConfigReserved[16] Struct Reserved W/R 

iMapped INT Axis parameter mapping flag R/O 

iType INT Axis type R/O 

iSlave INT Axis mapping ID R/O 

iVirtualAxis INT Virtual axis flag R/O 

iEnableStatus INT Axis enable status R/O 

iAlmStatus INT Axis alarm status R/O 

iAxisOprationStatus INT Axis operation status R/O 

iCheckDoingStatus INT 
Axis motion status 

0: stopped, 1: running 
R/O 

iInterpNum INT Interpolation channel number R/O 

iInterpBitType INT 
Control mode flags 

bit0: P_Task, bit1: S_Task, bit2: F_Task, bit3: cam 
R/O 

dCommandPulse DINT Current command position R/O 

hEncoderCounter DINT Feedback-to-command position deviation R/O 

dEncoderPos DINT Encoder feedback position R/O 

dStatusReserved[16] DINT Reserved R/O 

 

4.11.3_ECATMaster Parameters 
The EtherCAT master parameters include the master operation status and maximum cycle time, as shown in 

Table 4-2. 

Table 4-2 Master Information 

Name Data Type Description R/W 

bMasterEnableState BOOL Master enable status RO 

bLinkState BOOL Master link state RO 

dCycleTime DINT Master cycle time RO 

dTaskExeTime DINT Master task execution time RO 

iMasterState INT Master bus status RO 

iSlaveNumber INT Number of connected slaves RO 

iDcSlaveNumber INT Number of slaves supporting DC sync RO 

iLossPackeCounter INT Master packet loss cumulative counter RO 

dPdoInLength DINT Master PDO input length RO 

dPdoOutLength DINT Master PDO output length RO 

iCycleJitter INT Master sync cycle jitter RO 

iEthercatRun INT 

Master running flag 

0: stopped, 1: initializing, 3: running 

RO 

iScanRaedy INT 

Master scan ready 

0: not ready, 1: ready 

RO 

dReserved[31] DINT Reserved RO 

4.11.4_ECATSlave Parameters 
Table 4-3 Slave Information 

Name Data Type Description R/W 

_  ECATSlave Array EtherCAT slave operational status RO 

_  ECASlave[0] Sruct Slave 0 axis RO 

iState INT Slave current bus status RO 

iALstatescode INT AL states code RO 

iConfigaddr INT Configuration address RO 

iAliasaddr INT Slave alias address RO 

dEep_man DINT Slave equipment manufacturer ID RO 

dEep_id DINT Slave equipment ID RO 

iItype INT Interface type RO 

iDtype INT Device type RO 

iObits INT PDO output bits RO 

iObytes INT PDO output bytes RO 

iOstartbit INT PDO output start bit RO 

iIbits INT PDO input bits RO 

iIbytes INT PDO input bytes RO 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 55 - 
 

iIstartbit INT PDO input start bit RO 

iHasdc INT DC support RO 

iPtype INT PHY interface type RO 

iTopology INT Topology RO 

iActiveports INT Active ports RO 

iParent INT Parent slave ID RO 

iParentport INT Parent port ID RO 

iEntryport INT Entry port RO 

iSlotConfig INT Valid slot configuration RO 

iRdSlotsNum INT Read slot numbers RO 

dRdSlotsIds[31 ARRY Read slot ID list RO 

dEep_rev DINT Slave equipment version RO 

iPackLossCounter INT Cumulative packet loss counter RO 

iPackLossSign INT Packet loss sign RO 

 

Note: 

➢ _ECATSlave is a struct array with a length of 72. _ECASlave[0] data structure represents the information for 

Slave 0, including its operational status, packet loss count, and other relevant details. Subsequent axes follow 

the same structure for their respective slaves. 

4.12 Timer 

4.12.1 Overview 
Based on the IEC 61131-3 standard timer specifications, four types of timer with  enhanced reset functionality 

are defined as follows: Pulse Timer (DTPR), On-Delay Timer (DTON), Off-Delay Timer (DTOF), and Time 

Accumulation Timer (DTACR). They feature a 1ms time base with real-time updates to current values and status 

during execution. The program supports up to 4096 timer instructions. All timer types share identical instruction 

parameters: 

Table 4-4 Timer Instruction Parameters 

Name Definition Data Type Description 

Enable Enable flow / Start input 

PT Input variable DINT Delay time 

R Input variable BOOL Reset input 

Q Output variable BOOL Timer output 

ET Output variable DINT Current elapsed time 

Timer timing sequence operation: 

 

4.12.2 Pulse Timer (DTPR) 
When the Enable input flow transitions from OFF to ON, the timer starts timing, and output Q turns ON. 

Regardless of subsequent changes to the Enable input flow, Q remains ON for the duration specified by the PT 

parameter. Upon reaching the PT-specified time, Q turns OFF. During timing, ET outputs the current elapsed time. 

If the Enable input flow remains ON after the timer completes, the ET value is retained; if Enable is OFF, ET resets 

to 0. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 56 - 
 

 
If the reset input R transitions from OFF to ON during timing, the TPR timer resets to 0 and output Q turns OFF. 

After the reset input R returns to OFF, the timer resumes timing if the Enable input flow is active. 

PT: Setting range of 0ms~2147483647ms (~24 days maximum); if PT ≤ 0, it is handled as 0. 

Timing Diagram 

The timing diagram for parameters Enable, R, Q, and ET is as follows: 

 
Note: 

➢ Output parameters "ET" and "Q" are updated when the instruction is executed. Thus, the state change of "Q" 

occurs not at the exact moment when the elapsed time equals "PT" but at the first execution of the instruction 

after the elapsed time reaches "PT." This introduces a maximum delay of one scan cycle for the output 

parameters. 

4.12.3 On-Delay Timer (DTON) 
When the Enable input flow transitions from OFF to ON, the timer starts timing, and output Q remains OFF. 

While Enable remains ON, the timer runs for the duration specified by the PT parameter. Once the PT-specified time 

is reached, Q turns ON. If Enable turns OFF during or after timing, the timer stops, and Q resets to OFF. 

During timing (with Enable ON), ET outputs the current elapsed time. If the timer completes and Enable remains 

ON, the ET value is retained; if Enable turns OFF, ET resets to 0. 

If the reset input R transitions from OFF to ON during timing, the DTON timer resets to 0 and output Q turns 

OFF. After R returns to OFF, the timer resumes counting only if the Enable input flow transitions from OFF to ON 

again. 

 
  

PT: Setting range of 0ms~2147483647ms (~24 days maximum); if PT ≤ 0, it is handled as 0. 

Timing Diagram 

The timing diagram for parameters Enable, R, Q, and ET is as follows: 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 57 - 
 

 
Note: 

➢ Output parameters "ET" and "Q" are updated when the instruction is executed. Thus, the state change of "Q" 

occurs not at the exact moment when the elapsed time equals "PT" but at the first execution of the instruction 

after the elapsed time reaches "PT." This introduces a maximum delay of one scan cycle for the output 

parameters. 

4.12.4 Off-Delay Timer (DTOF) 
When the Enable input flow transitions from OFF to ON, the timer starts timing and output Q turns ON. When 

Enable transitions from ON to OFF, the timer runs for the duration specified by the PT parameter while Enable 

remains OFF. Q turns OFF once the PT-specified time is reached. 

While Enable is ON, ET outputs 0. When Enable transitions from ON to OFF, ET outputs the current elapsed 

time during timing. After the timer completes, the ET value is retained. 

 
When Enable is ON and the reset input R transitions from OFF to ON, output Q turns OFF. If R returns to OFF, 

Q resumes ON. When Enable transitions from ON to OFF during or after timing, if the reset input R transitions from 

OFF to ON, output Q turns OFF and ET resets to 0. After R returns to OFF, the timer resumes counting only if the 

Enable input flow transitions from ON to OFF again. 

PT: Setting range of 0ms~2147483647ms (~24 days maximum); if PT ≤ 0, it is handled as 0. 

Timing Diagram 

The timing diagram for parameters Enable, R, Q, and ET is as follows: 

 

 
 

Note: 

➢ Output parameters "ET" and "Q" are updated when the instruction is executed. Thus, the state change of "Q" 

occurs not at the exact moment when the elapsed time equals "PT" but at the first execution of the instruction 

after the elapsed time reaches "PT." This introduces a maximum delay of one scan cycle for the output 

parameters. 

 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 58 - 
 

4.12.5 Time Accumulation Timer (DTACR) 
When the Enable input flow is ON, the timer continues counting if its elapsed time has not reached the PT-

specified time, keeping output Q OFF. Q turns ON once the PT-specified time is attained. If Enable transitions to 

OFF during timing (while previously ON), the timer retains its current count. When Enable returns to ON, the timer 

resumes counting from the retained value until PT is reached, at which point Q turns ON. 

While Enable is ON, ET outputs the current elapsed time. After reaching the PT-specified time, ET retains its 

value. If Enable is OFF, the ET value remains unchanged. 

 
If the reset input R transitions from OFF to ON during or after timing, output Q turns OFF and ET resets to 0. 

After the reset input R returns to OFF, the timer resumes timing if DTACR input flow is active. 

PT: Setting range of 0ms~2147483647ms (~24 days maximum); if PT ≤ 0, it is handled as 0. 

Timing Diagram 

The timing diagram for parameters Enable, R, Q, and ET is as follows: 

 
Note: 

➢ Output parameters "ET" and "Q" are updated when the instruction is executed. Thus, the state change of "Q" 

occurs not at the exact moment when the elapsed time equals "PT" but at the first execution of the instruction 

after the elapsed time reaches "PT." This introduces a maximum delay of one scan cycle for the output 

parameters. 

Timer Usage Notes 

1. For standard timers T0~T511, the time base values are as follows: 

Timer Type Base Value 

T0~T209 100ms 

T210~T255 10ms 

T256~T511 1ms 

DTPR/DTON/DTOF/DTACR 1ms 

2. Avoid using T0~T511 timers (fixed addresses) in FB/FC function block encapsulation. Repeated calls to FB 

may cause double-coil issues for T timers. Use DTPR/DTON/DTOF/DTACR timers instead, which are automatically 

instantiated during multiple calls. 

4.13 Graphical Block Instructions 

4.13.1 Instruction Structure 
Selected instructions support graphical block programming. A graphical block instruction consists of an 

instruction name, input terminals, and output terminals. The schematic below demonstrates this structure using an 

axis motion control block as a representative example: 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 59 - 
 

Instruction Name

No Instance

Input pin

Output pin

 
Floating-point values (e.g., target position and velocity) in the instructions use the single-precision floating-

point (FLOAT) type. Therefore, values in PLC programs must adhere to the range and precision of the FLOAT type: 

a range of -3.4E38 to 3.4E38 and 7 significant digits. If a value exceeds 7 significant digits, the excess digits are 

automatically rounded. 

4.13.2 Implementation Workflow 
When programming, entering the graphical block instruction name and pressing Enter inserts the instruction 

into the network. Parameters can be directly edited within the graphical block. 

1. In ladder diagram editing, type the instruction name or select it from the prompt list to add the graphical block 

instruction, as shown below. 

 
2. After inserting the instruction, press Enter to auto-invoke it. Parameters marked with "??" are mandatory, while 

"□" indicates optional parameters. If optional parameters are unused, default values are automatically assigned. 

Outputs cannot retrieve instruction status during program execution or monitoring/debugging if parameters are 

unused. 

 
3. Search the instruction name in the Instruction Tree, and then double-click the desired instruction from the results, 

as shown below:  

 
 

4.13.3 Quick Variable Addition 
1. In ladder diagram programming, right-click the instruction and select "Auto Define Variables", as shown 

below. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 60 - 
 

 
 

2. The "Define Variable" dialog will open, allowing configuration of “Initial Value”, “Variable Table”, “Data 

Hold” attributes, etc. After configuration, the interface appears as shown below: 

 
 

3. Click "OK", and the variables are automatically generated. They can be viewed and modified in the variable 

table, as illustrated below:  

 

 
 

4.14 Subroutines 

4.14.1 Overview 
A subroutine constitutes a self-contained code module executable by the main program or other subroutines, 

functioning as an optional component within user programs. 

Using subroutines in user programming offers the following advantages: 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 61 - 
 

1. Reduces program size. Repetitive code segments with identical functionality can be encapsulated into a 

subroutine for repeated calls. 

2. Simplifies program structure, particularly by streamlining the main program. 

3. Improves cross-project portability. 

 

4.14.2 Subroutine Concepts 
Subroutines are categorized as follows: 

Flag Name Description 

SBR Subroutine 

Supports up to 256 subroutines, including Standard Subroutine or Encrypted 

Subroutine. 

Encrypted and standard subroutines share the system’s 200K-step capacity 

without restrictions. 

INT 
Interrupt Subroutine  

(Max. 68) 

External interrupts: X0~X7 input interrupts, supporting rising edge, falling 

edge, and dual-edge detection. 

Timed interrupts: 3 points, with a configurable timebase of 1ms~32767ms. 

High-speed counter interrupts: 7 points. 

High-speed output completion interrupts: Y0~Y7. 

Comparison interrupts: 16 points (1~16). 

 

4.14.3 Subroutine Execution Mechanism 
The execution logic of the main program and subroutines, along with the cyclic scan method, is illustrated below: 

 

 
 

4.14.4 Subroutine Nesting Levels 
Subroutines support up to 6 nesting levels, with the main program calling a subroutine counted as Level 1. Each 

subsequent call increases the nesting level by one. If a nested call returns, the nesting level is not incremented. The 

structure is shown below: 

 

 

 
 

4.14.5 Subroutine Variable Table Definition 
The subroutine variable table declares the subroutine’s interface parameters and local variables (collectively 

referred to as variables) and defines their usage properties. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 62 - 
 

 
 

Subroutine Variable Attributes 

The interface parameters and local variables (collectively referred to as variables) of a subroutine have the 

following attributes: 

1. Variable Address 

Each subroutine variable is assigned a fixed LM or V element address. The address is automatically allocated 

by the programming software based on the variable’s data type, following contiguous address allocation principles. 

2. Variable Name 

A variable name (alias) can be assigned to interface parameters or local variables. Variables can be referenced 

by their names in the program. 

3. Variable Type 

Subroutine variables are categorized as IN, OUT, IN_OUT, or TEMP: 

①IN-type: Passes input values to the subroutine upon invocation. 

②OUT-type: Passes return values from the subroutine upon completion. 

③IN_OUT-type: Passes input values upon invocation and return values upon completion.  

④TEMP-type: Acts as a local variable valid only within the subroutine scope. 

4. Variable Data Type 

The variable data type defines the data width and range. The following table lists the available variable data 

types: 

 

4.14.6 Subroutine Parameter Passing 
When calling a subroutine in the main program, if the subroutine defines local input/output variables, the 

corresponding values or global/temporary variable elements must be specified in the interface parameters. Ensure 

data type consistency between local variables and interface parameters. 

 

 

Data Type Description Occupied LM/V Addresses 

BOOL Bit-type variable 1 LM element address 

INT Signed integer variable 1 V element address 

DINT Signed long integer variable 2 consecutive V element addresses 

REAL Floating-point variable 2 consecutive V element addresses 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 63 - 
 

4.14.7 Subroutine Usage Example 
The following example illustrates how to create and call a subroutine: 

1) Overview 

Call subroutine SBR_1 from the main program MAIN to perform the addition of two integer constants (10 + 5), 

and assign the result (15) to D2. 

2) Steps 

1. Create a subroutine named SBR_1 in the project. 

2. Program SBR_1. 

Define the subroutine’s operand interface in its variable table: 

Variable 1: Name = Number1 (IN-type parameter, INT data type), sequentially assigned V element address V0. 

Variable 2: Name = Number2 (IN-type parameter, INT data type), sequentially assigned V element address V1. 

Variable 3: Name = SumResult (OUT-type parameter, INT data type), sequentially assigned V element address 

V2. 

3. Program SBR_1’s implementation code, as shown below. 

 
 

4. Call SBR_1 in the main program using the CALL instruction, as shown below. 

 
 

5. Compile, download, execute the user program, and perform online debugging and monitoring. Execution 

results are shown below. 

 

 
 

4.14.8 Subroutine Usage Notes 
The following considerations apply when writing or calling subroutines: 

1. Nested Calls: Supports nested subroutine calls up to 6 levels. 

Example of valid nesting: 

MAIN → SBR1 → SBR2 → SBR3 → SBR4 → SBR5 → SBR6 (→ denotes subroutine calling via CALL 

instruction). 

2. Prohibited Calls: 

The following call structures are invalid. 

Recursive Calls: MAIN → SBR0 → SBR0 (illegal). 

Cyclic Calls: MAIN → SBR0 → SBR1 → SBR0 (illegal). 

3. A subroutine variable table supports up to 16 BOOL-type and 16 word-type variables. 

4. Ensure operand attributes in the CALL instruction match the variable attributes defined in the subroutine’s 

variable table. The compiler verifies this matching. 

5. Subroutine calls are not allowed within interrupt routines. 

6. In the call editing area, type “CALL + Spacebar”, then select the target subroutine from the pop-up list. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 64 - 
 

4.15 Interrupt Subroutine 

4.15.1 Interrupt Overview 
Interrupts execute immediately upon triggering, independent of the main program’s scan cycle. This mitigates 

delays or timing deviations caused by scan cycles in high-speed signal processing, improving mechanical operation 

accuracy. 

(I) Interrupt Handling Mechanism 

1. When an interrupt event occurs and is enabled, its event number is added to the interrupt request queue, a 

FIFO (First-In-First-Out) queue with a depth of 8. 

(II) System Handling of Interrupt Requests 

1. If the interrupt request queue is not empty, the system interrupts normal user program execution. 

2. The system checks the head entry of the queue (the earliest pending interrupt event number) and executes 

the corresponding user-defined interrupt subroutine. 

3. After the interrupt subroutine completes (via a return instruction), the head entry is removed. Subsequent 

entries shift forward, and the next entry becomes the new head. 

4. The system repeats the above steps until the queue is empty. 

5. When the queue is empty, the system resumes the interrupted main program. 

(III) The system processes one interrupt request at a time. New interrupts during processing are queued at the 

tail and handled sequentially after prior requests are resolved. 

(IV) When the queue reaches its maximum capacity (8 entries), the system blocks new interrupt events until all 

queued requests are processed and the main program resumes execution. 

Note 

1. Avoid excessive execution time in interrupt routines, as this may lead to blocked interrupt events (lost requests), 

prolonged system scan cycles, and reduced main program efficiency. 

2. Subroutine calls are prohibited within interrupt routines. 

3. Use the immediate refresh instruction (REF) to refresh I/O instantly during interrupts. Note that REF execution 

time depends on the number of I/O points refreshed. 

4. To trigger an interrupt request, enable the corresponding interrupt event via its SM flag (each interrupt type has 

dedicated SM enable/disable controls). Ensure the global interrupt enable flag is ON. 

5. If an interrupt request occurs without a corresponding interrupt program in the user program, the system will still 

respond but execute a no-operation (NOP). 

4.15.2 Timed Interrupts 
Overview 

Timed interrupts execute an interrupt subroutine once at a preset interval, independent of the scan cycle. 

Applications 

Timed interrupts are ideal for scenarios requiring periodic processing with strict timing, such as periodic 

sampling of analog inputs or waveform-based refreshing of analog outputs. 

Timed Interrupt Resources for SH Series PLC 

Timed Interrupts Event Number Timer Setting (SD) Enable Control (SM) 

0 22 SD47 (1~32767ms) SM47 

1 23 SD48 (1~32767ms) SM48 

2 24 SD49 (1~32767ms) SM49 

 

CAUTION 

➢ When the timer interrupt is disabled, pending timer interrupts in the queue will still be executed. 

➢ If the timer interrupt is re-enabled after being disabled, the timer resets and starts counting from zero. 

➢ To modify the timer value setting during program execution, follow these steps: disable the timer interrupt, 

adjust the timer value, and then re-enable the interrupt. 

 

Example 

Requirements: Use Timer Interrupt 0 to trigger an interrupt every 1 ms. Each time the interrupt is entered, the 

D200 register increments by 1. 

1. Right click the "Program Block” in the Project Manager area, and select “Insert Interrupt Subprogram” to 

create an interrupt subprogram (INT_01), as shown below. 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 65 - 
 

 
 

2. Right-click the newly created INT_01 subprogram and select “Property”, and then set its property to 

“Timing interrupt 0”, as shown below. 

 

 
 

3. Program in the Main program and INT_01 as shown below: 

 

 
 

4.15.3 External Interrupt 
(1) Description 

Uses input signals from X0~X7 to execute interrupt subprograms. 

(2) Application 

Suitable for high-speed control or capturing short-duration pulses, as it processes external input signals 

independently of the PLC’s scan cycle. 

(3) Precautions 

i. The system’s maximum response frequency to external signals is 1 kHz. Events exceeding this frequency may 

be missed. 

ii. Both rising-edge and falling-edge interrupts can be enabled on the same input port. All external interrupts are 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 66 - 
 

active only when the global interrupt control (EI) is enabled and the corresponding interrupt enable SM bit is active. 

iii. For SH300 and SH500 series, the maximum input pulse frequency for X0~X7 is <200 kHz. 

External Interrupt Number Assignment: 

 

 

Example 

Requirements: Trigger an interrupt on the rising-edge signal of X0 to increment the D0 register by 1 in the 

interrupt subprogram. 

1. Right click the "Program Block” in the Project Manager area, and select “Insert Interrupt Subprogram”, as 

shown below. 

 

 
 

2. Right-click the newly created INT_01 subprogram and select “Property”, and then set its property to “X0 

input rising edge interrupt”, as shown below. 

 
 

3. Program in the Main program and INT_01 as shown below: 

 

Rising-edge Interrupt Falling-edge Interrupt 

Port 

Interr

upt 

No. 

Interrupt Source 

Interrupt 

Enable 

SM 

Port 
Interrupt 

No. 
Interrupt Source 

Interrupt 

Enable SM 

X0 0 
X0 Rising-edge 

Interrupt 
SM25 X0 8 

X0 Trailing-edge 

Interrupt 
SM33 

X1 1 
X1 Rising-edge 

Interrupt 
SM26 X1 9 

X1 Trailing-edge 

Interrupt 
SM34 

X2 2 
X2 Rising-edge 

Interrupt 
SM27 X2 10 

X2 Trailing-edge 

Interrupt 
SM35 

X3 3 
X3 Rising-edge 

Interrupt 
SM28 X3 11 

X3 Trailing-edge 

Interrupt 
SM36 

X4 4 
X4 Rising-edge 

Interrupt 
SM29 X4 12 

X4 Trailing-edge 

Interrupt 
SM37 

X5 5 
X5 Rising-edge 

Interrupt 
SM30 X5 13 

X5 Trailing-edge 

Interrupt 
SM38 

X6 6 
X6 Rising-edge 

Interrupt 
SM31 X6 14 

X6 Trailing-edge 

Interrupt 
SM39 

X7 7 
X7 Rising-edge 

Interrupt 
SM32 X7 15 

X7 Trailing-edge 

Interrupt 
SM40 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 67 - 
 

 

4.15.4 High-speed Counter Interrupt 
(1) Description 

Triggers an interrupt based on the current value of the high-speed counter using the HCNT instruction. Used in 

conjunction with the DHSCI instruction, the interrupt subprogram executes when the counter’s current value matches 

the threshold defined by DHSCI. 

(2) Usage Conditions 

High-speed counter interrupts are valid only when paired with the HCNT or DHSCI instruction, based on the 

counter’s value. Users can program logic related to external pulse inputs in the high-speed interrupt program. All 

high-speed counter interrupts (33~40) are active only when the global interrupt control (EI) and the corresponding 

interrupt enable flag are enabled. The interrupt assignments are listed below: 

 

Event No. Interrupt Event Interrupt Enable SM 

33 High-speed counter interrupt 0 SM58 

34 High-speed counter interrupt 1 SM58 

35 High-speed counter interrupt 2 SM58 

36 High-speed counter interrupt 3 SM58 

37 High-speed counter interrupt 4 SM58 

38 High-speed counter interrupt 5 SM58 

39 High-speed counter interrupt 6 SM58 

40 High-speed counter interrupt 7 SM58 

 

Example 

1. Right click the "Program Block” in the Project Manager area, and select “Insert Interrupt Subprogram”, as 

shown below. 

 
 

2. Right-click the newly created INT_01 subprogram and select “Property”, and then set its property to “High-

speed counter interrupt 0”, as shown below. 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 68 - 
 

3. Program in the Main program and INT_01 as shown below: 

 
4. Compile, download, and run the program. When M1 is ON, an interrupt is triggered once the current value 

of high-speed counter C236 reaches 10,000. At this point, register D0 in the interrupt program is set to 1. 

 

4.15.5 Pulse Output Complete Interrupt 
(1) Description 

i. For SH100 series: When enable flags SM50, SM51, SM52 (corresponding to Y0~Y2, respectively) are ON, 

the Pulse Output Complete Interrupt can be triggered with positioning instructions PLSY, PLSR, DRVA, DRVI. 

Users can perform related operations within the interrupt program. 

ii. For SH300/SH500 series: When enable flags SM50, SM51, SM52, SM53, SM54, SM56, SM57 

(corresponding to Y0~Y7, respectively) are ON, the Pulse Output Complete Interrupt can be triggered with 

positioning instructions PLSY, PLSR, DRVA, DRVI. Users can perform related operations within the interrupt 

subroutine. 

(2) Interrupt Enable Mapping 

Port Event No. Interrupt Event Interrupt Enable SM 

Y0 25 
High-speed output complete 

interrupt 0 
SM50 

Y1 26 
High-speed output complete 

interrupt 1 
SM51 

Y2 27 
High-speed output complete 

interrupt 2 
SM52 

Y3 28 
High-speed output complete 

interrupt 3 
SM53 

Y4 29 
High-speed output complete 

interrupt 4 
SM54 

Y5 30 
High-speed output complete 

interrupt 5 
SM55 

Y6 31 
High-speed output complete 

interrupt 6 
SM56 

Y7 32 
High-speed output complete 

interrupt 7 
SM57 

Example 

1. Right click the "Program Block” in the Project Manager area, and select “Insert Interrupt Subprogram”, as 

shown below. 

 
2. Right-click the newly created INT_01 subprogram and select “Property”, and then set its property to “High-

speed counter interrupt 0”, as shown below. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 69 - 
 

 
3. Program in the Main program and INT_01 as shown below: 

 
 

4. Compile, download, and run the program. Manually set registers D10=1000 and D12=1000. When M0 is 

ON, an interrupt is triggered upon completion of the pulse instruction output. At this point, register D0 in 

the interrupt program is set to 1. 

4.15.6 Axis High-speed Counter Comparison Interrupt 
When using a local counter axis, the axis's high-speed counter comparison instruction can be employed. Enable 

the corresponding interrupt by setting the enable flag SM71, with total support for 16 sets of comparison interrupt 

instructions. 

Example 

1. Right click the "Program Block” in the Project Manager area, and select “Insert Interrupt Subprogram”, as shown 

below. 

 

 
 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 70 - 
 

2. Right-click the newly created INT_01 subprogram and select “Property”, and then set its property to “Position 

comparison interrupt 1”, as shown below. 

 

 
 

3. Program in the Main program and INT_01 as shown below: 

 
 

4. Compile, download, and run the program. Manually set HC_Compare_Position_0=30 and 

HC_Compare_InterruptMap_0=53. When M2 and M3 are turned ON, an interrupt signal is triggered once the 

counter value reaches 30, and the register D0 is set to 1. 

4.15.7 Serial Port Interrupt 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 71 - 
 

(I) Description 

In Freeport mode, the system generates interrupt events based on serial port send/receive operations. 

(II) Application 

Each serial port is allocated 2 interrupt resources. Serial port interrupts are used for scenarios requiring special 

processing or real-time handling of frame send/receive operations, ensuring immediate response independent of the 

scan cycle. 

(III) Precautions 

Enable/disable serial port interrupts by setting corresponding SM elements ON/OFF. Disabling interrupts does 

not cancel queued interrupt tasks. Avoid calling the XMT instruction under continuously enabled conditions within 

a send interrupt service subprogram, as this may cause nested interrupts and block user program execution. 

(IV) Frame Send/Receive Interrupt. Refers to interrupt events triggered upon completion of XMT (send) or RCV 

(receive) instructions. 

Serial Port Interrupt Resource Table 

Event No. Interrupt Event Interrupt Enable SM 

16 COM0 Frame Send Interruption SM41 

17 
COM0 Frame Receive 

Interruption 
SM42 

18 COM1 Frame Send Interruption SM43 

19 
COM1 Frame Receive 

Interruption 
SM44 

20 COM2 Frame Send Interruption SM45 

21 
COM2 Frame Receive 

Interruption 
SM46 

 

Example 

1. Right click the "Program Block” in the Project Manager area, and select “Insert Interrupt Subprogram”, 

as shown below. 

 
 

2. Right-click the newly created INT_01 subprogram and select “Property”, and then set its property to 

“Position comparison interrupt 1”, as shown below. 

 

 
 

3. Program in the Main program and INT_01 as shown below: 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 72 - 
 

 
 

4. Compile, download, and run the program. Assign D10=10. When M2 is activated, an interrupt will be 

triggered, setting D0=1 in the interrupt subprogram. 

 

4.16 Functions and Function Blocks (FB&FC) 

4.16.1 Function Block (FB) 
A Function Block (FB) abstracts and encapsulates reusable program segments into a generic block that can be 

repeatedly called. Utilizing FB improves development efficiency, reduces programming errors, and enhances 

program quality. During execution, an FB generates one or more output values and retains unique internal variables. 

The controller’s runtime system allocates memory for these variables, which define the state characteristics. For 

identical input values, varying internal states may yield different computational results. 

The basic workflow for using FB: Create → Program → Instantiate → Execute→ Encapsulate → Import. 

 

Create a FB 

1. In the Project Manager area, right-click "FB Function Block" and select New. In the pop-up dialog box, 

configure the FB editor and click OK to complete creation (FB_01). Right-click "FB_01" to rename, 

encrypt, import/export, or delete the FB. 

 

 
 

Program a FB 

Double-click "FB_01" to enter the editing interface. Define variable properties such as Variable Name, Variable 

Type, Data Type, Initial Value, and Power-off Hold before use, as shown below. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 73 - 
 

 
 

 

Example 1: Encapsulating an addition function block using FB – Ladder Diagram (LD) 

 
 

Example 2: Encapsulating an addition function block using FB – Structured Text (ST) 

 

 

Description of FB properties 

Property Description 

Variable Name User-defined variable identifier 

Variable Type Variable Type Type Description 

INT Input variable Parameter passed into the FB 

OUT Output variable Parameter returned from the FB 

INTOUT Input/Output 

variable 

Parameter passed into and out of the 

FB 

TEMP Local variable Accessible only within the FB 
 

Data Type Support BOOL, INT, DINT, REAL, STRING, ARRAY, struct, pointers, etc. 

Initial Value Assign a default value to the variable. 

Power-off Hold Hold: If "Initialize Variables Hold" is selected during download, variables reset to initial 

values; otherwise, retain last runtime values. 

Not Hold: Variables reset to initial values on power-up. 

Comments Add comments to variables or soft elements. 

Note 1. Within an FB program, functions (FC) or function blocks (FB) can be called, 

supporting up to 8 levels of nested calls. 

2. Supported soft elements (e.g., D0) can be used as global variables in addition to FB 

variables.  



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 74 - 
 

 
 

 

Instantiate a FB 

After programming an FB, instantiate it in ladder diagram (LD) or structured text (ST) applications. 

Ladder Diagram (LD) 

● Method 1: In the LD application, select FB_02 and drag it to the editing area. Fill in parameter values in the 

dialog box to complete instantiation, as shown below. 

 

 
 

Structured Text (ST) 

● Method 1: Declare the FB instance in the instance table, then directly input the FB instance name in the ST 

application and press Enter, as shown below. 

 

 
 

● Method 2: In ST programming, select the FB and drag it to the programming area. Enter the FB name in the 

pop-up window to automatically instantiate it, as shown below. 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 75 - 
 

 
 

 

Execute a FB 

Ladder Diagram (LD) 

After instantiation, the FB’s Enable pin is connected to the ladder logic network. When the Enable power flow 

is ON, the FB executes, and its outputs update based on input states and internal variables. When the Enable power 

flow is OFF, the FB halts execution and outputs retain their last values, as shown below. 

 
 

 

Encapsulate a FB 

A tested FB can be encapsulated into a library for reuse across projects via AutoSoft’s library management. 

1. Right-click the function block and select Export, as shown below. 

 

 
 

2. In the pop-up Program File Export dialog box, select the target FB, set the export path, and click Export to 

generate the FB as an .EXP file. 

 

Import a FB 

Exported FB libraries can be imported into other programs for reuse via the following steps: 

1. Right-click the “FB Function Block” in the Project Manager area and select “Import” to add it to the project, 

as shown below. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 76 - 
 

 
 

2. The imported FB can be opened by double-clicking for editing or debugging. If the FB is encrypted, a 

password must be entered to modify it. 

4.16.2 Function (FC) 
A Function (FC) is an independently encapsulated program block that can define input/output parameters and 

non-static internal variables. Calling a function with identical input parameters always yields the same output results. 

A key characteristic of functions is their static internal variables and lack of internal state storage, distinguishing them 

from Function Blocks (FB). As a fundamental algorithm unit, FC is commonly used for mathematical operations 

(e.g., sin(x), sqrt(x)). 

The basic workflow for using FC: Create → Program → Call → Execute → Encapsulate. 

Create a Function 

1. In the Project Manager area, right-click the “FC Function”, select New, choose the editor in the dialog box, 

and click OK to create a Function. 

 

 
Program the Function 

1. Double-click the newly created function to enter the editing interface. This interface includes an 

Input/Output and Local Variables definition window, similar to function blocks program editing. 

 
 

Users can define input (IN), output (OUT), input/output (INOUT), and local variables (VAR). Supported data 

types include BOOL, INT, DINT, REAL, STRING, arrays, and struct. For struct variables, define members in the 

global variable structure is required. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 77 - 
 

 

⚫ Unlike function blocks, function variables cannot have initial values, and all local variables are “Not Hold”. 

⚫ Use ladder diagram (LD) to program the function. Functions (FC) can be called within the function and by other 

functions, function blocks, or programs. 

⚫ Avoid state-dependent or multi-cycle execution instructions (e.g., LDP, motion control commands). 

⚫ Functions support encryption, and import/export. 

 

Example 1: Encapsulate Y=KX+b using FC – Ladder Diagram (LD) 

 
 

Example 2: Encapsulate Y=KX+b using FC – Structured Text (ST) 

 
 

Call a Function 

After programming the FC, drag it to ladder diagram (LD) or structured text (ST) applications to call it, assign 

addresses or variables in the “Input Value”, and click OK. 

 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 78 - 
 

 
 

 

Execute a Function 

Ladder Diagram (LD) 

Once called, the function’s Enable pin connects to the ladder logic network. When the Enable power flow is ON, 

the function executes, updating outputs based on input states. When the Enable power flow is OFF, the function halts 

execution, and outputs retain their last values. 

 
 

Set Initial Values for FB 

Initial values for FB can be modified via either the FB type or FB instance. 

● Modifying the initial value through the FB type updates the type’s default value. 

● Modifying the initial value through the FB instance updates the instance-specific value. 

● If an instance’s initial value is modified, its member variables display the updated value with a yellow cell 

background. 

If unmodified, instance member variables show the default value with a white cell background. 

The FB type’s initial value serves as the default for instances. Reset the instance’s modified value to the default. 

Modifying Initial Values in Non-Nested FBs 

When modifying the FB type’s initial value (e.g., from 0 to 10), the FB instance adopts the default value (FB 

type’s initial value), as shown below. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 79 - 
 

 
Modifying Initial Values in Nested FBs 

If the variable Number3 (data type: Struct-FB1) references a nested struct Struct-FB, assign initial values 

directly within the Struct-FB struct, as shown in the figure below. 

 
 

FB View Label 

The displayed label consists of three components from left to right: Node Name, Instance Name, and Unsaved 

Indicator. Node Name refers to the name of the project tree node; Instance Name indicates the instance name within 

square brackets. 

 
 

As shown above, FB is the Node Name, FB_01:ADD_INT is the Instance Name, and * denotes unsaved changes. 

To ensure proper label parsing, the characters ., *, (, ) are prohibited when renaming FB or struct. 

 

4.16.3 Encrypt Function Blocks/Functions 
Here using Function Blocks (FB) as an example. (The encryption procedure for Functions (FC) is identical.) 

Encrypted FB/FC retain the same invocation method as standard FB/FC. 

1. In the Project Manager area, unfold FB Function Block, right-click the target FB, and select 

Encrypt/Decrypt. 



Programming Basics                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 80 - 
 

 
2. In the “Program Encrypt” dialog box, enter and confirm the password. 

 
 

3. The encrypted FB is displayed as the figure below. 

 
 

4. Repeat the same steps to decrypt the FB, restoring it to an unencrypted state. 

To access an encrypted FB: Double-click the encrypted node, or right-click the encrypted node and select 

Password Verify, and enter the correct password in the pop-up dialog box. 

 

 
 

 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 81 - 
 

5 Programming Language 

5.1 Structured Text (ST) 

5.1.1Overview 
ST (Structured Text) is one of the five standard languages specified in IEC 61131-3, featuring a syntax similar 

to PASCAL. It excels in conciseness, efficiency, and portability, enabling developers to write PLC programs using 

structured code akin to high-level programming languages. Compared to traditional Ladder Diagram (LD), ST 

demonstrates superior capabilities: 

⚫ Conciseness: ST features a clear code structure, enhancing readability and maintainability. 

⚫ Efficiency: Leveraging high-level language features (e.g., loops, conditional statements) significantly 

boosts programming productivity. 

⚫ Portability: ST code is executable across various PLC platforms, ensuring strong portability. 

 

For example: 

IF bool_expression_1 THEN 

<logic_statement> 

ELSEIF bool_expression_2 THEN//Optional lines 

<logic_statement> 

ELSE//Optional lines 

<logic_statement> 

ENDIF; 

 

Note: 

➢ Supported by SH300/SH500 series. For VC5 series, firmware v2.29+ and AutoSoft 12.10.3+ are required. 

➢ Maximum 1,000 lines per ST file. 

5.1.2 Basic Rules of ST Language 
(1) Variable declaration before use 

Variables in ST require declaration before use. PLC programming tools prompt undeclared variables, with some 

even automatically creating them. Declared variables generally need only data type and attributes, requiring no 

initialization unless specified. 

(2) English input 

ST programming mandates English input mode for compilation success. While Chinese variables are supported, 

their usage demands careful input method management: either English mode (default half-width/punctuation) or 

Chinese input with half-width characters and English punctuation.  

(3) Comments 

Comments are ignored during compilation and support any text/symbols as long as the PLC permits. Comments 

are categorized into single-line comment and multi-line comment, which is enclosed within (**) delimiters, with an 

example shown in figure below. 

 

 

5.1.3 ST Expressions 
Expressions are fundamental elements in ST, composed of operators and operands. Operands may be constants, 

variables, function calls, or nested expressions and operators define computations between variables. 

 

Example: 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 82 - 
 

⚫ Constants: 10, 10.5, 16#10 

⚫ Variables: dVar, D0:R 

⚫ Function calls: Fun1(2,8,9) 

⚫ Compound expressions: 

10+3, var1 OR var2, (x+y)/z, iVar1:=iVar2+22 

 

Expressions are evaluated based on operator precedence. Operators with the highest precedence are evaluated 

first, followed by those with lower precedence in descending order. Operators of equal precedence are evaluated left 

to right as written. 

Examples 

Given INT variables A=1, B=2, C=3, D=4: 

A+B-C*ABS(D) evaluates to -9 

(A+B-C)*ABS(D) evaluates to 0 

For operators with two operands, left operand is evaluated first. Example: For SIN(X)*COS(Y), SIN(X) is 

evaluated first, followed by COS(Y), and finally their multiplication. 

Table 4-1 ST Language Operators 

5.1.4 Variables 
ST programming requires pre-declared variables. Define variables in the variable table and reference them in 

ST, or directly write variables in the ST editor; pressing ENTER or clicking outside the program block to auto-trigger 

batch declaration dialog box. The default variable type is INT, Data types are automatically recognized during 

function/instruction calls. 

 
ST programming supports soft elements (e.g., D, R, W) but requires data type declarations. 

Examples: 

D0: Defined as INT. 

D0:D: Defined as DINT (occupies D0 and D1 registers). 

D10:R: Defined as REAL (occupies D10 and D11 registers). 

Refer to the figure below for illustration. Refer to the figure below for illustration. 

Operation Symbol Example Priority 

Parentheses (Expression) (A+B/C), (A+B)/C, A/(B+C) 9 (Highest) 

Function call Function name (parameters separated by 

commas) 

LN(A), MAX(X,Y) 8 

Negation ‑ ‑A 7 

Unary plus + +B 7 

Bitwise NOT NOT NOTC 7 

Multiply * A*B 6 

Divide / A/B 6 

Modulus MOD AMODB 6 

Add + A+B 5 

Subtract ‑ A‑B 5 

Comparison <,>,<=,>= A<B 4 

Equality = A=B 4 

Inequality <> A<>B 4 

Logical AND AND AANDB 3 

Logical XOR XOR AXORB 2 

Logical OR OR AORB 1 (Lowest) 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 83 - 
 

 

5.1.5 Constants 
Constants can be defined in multiple formats: 

1. Default decimal: E.g., a:= 100; 

2. Ladder Diagram (LD)-style constants: 100 (decimal), 16# for hexadecimal, 8# for octal, floating-point 

numbers (e.g., 12.234).  

 

 

5.1.6 FB/FC/SBR/Interrupt Invocation 
(1) FB Block in ST: Input parameters (except axis parameters, which are mandatory) and output parameters 

are optional, as shown below. 

 
 

(2) FC Block in ST: All input parameters are mandatory; output parameters can be omitted. Missing inputs 

will cause compilation errors. 

(3) Subprogram in ST: Called as a parameterless function, e.g., SBR_03(); 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 84 - 
 

 
 

 

(4) Interrupt in ST: No manual invocation required. Enable interrupts by calling EI(); and setting the 

corresponding SM bits to ON.  

 
 

Note: 

➢ FB/FC nested calls must not exceed 8 levels. 

➢ Subprogram (SBR) nesting must not exceed 6 levels. 

5.2 Syntax Instruction 

An ST program is composed of instructions, which are separated by semicolons “;”. 

Table 4-3 ST Syntax Instruction List 

Instruction Function Example 

:= Assignment A:=B 

FB call Function block call and 

output 

TONR (In:=b0, PT:=dVar, R:=b0, Q=>, ET=>); 

 

 

IF 

 

 

Selection 

IF A>0 THEN 

X:=10; 

ELSE 

X:=0; 

END_IF; 

 

 

CASE 

 

 

Multi-branch selection 

CASEAOF 

1:X:=1; 

2:X:=2; 

3:X:=3; 

ELSEX:=0; 

END_CASE; 

 

WHILE 

 

While loop 

A:=0; 

WHILE A<=1000DO 

A:=A+7; 

END_WHILE; 

 

 

 

 

A:=1; 

TOTAL:=0; REPEAT 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 85 - 
 

REPEAT Repeat loop TOTAL:=TOTAL+A; A:=A+1; 

UNTILA>10 

END_REPEAT; 

 

FOR 

 

For loop 

FORi:=0TO100DO 

X[i]:=0; 

END_FOR; 

EXIT Exit loop EXIT; 

CONTINUE Break current loop CONTINUE; 

RETURN Return RETURN; 

 

(*text*) 

 

Comment 

(* Comment out multiple lines 

IFA=3THENA:=5; 

END_IF; 

*) 

// text Single-line comment //A:=5; 

; Empty statement ; 

5.2.1 Assignment Statement 
The assignment statement is one of the most frequently used constructs in Structured Text (ST). It assigns the 

value of the right-hand expression to the left-hand operand (variable or address) using the operator :=. 

Syntax: 

<Variable> := <Expression>; 

Example: 

A := B * 5; 

After execution, the value of A becomes five times the value of B. 

5.2.2 Function Block Invocation 
Syntax: 

FB_Instance Name(FB_Input := Value, FB_Output => Value, ...); 

Example:  

Call an instance of an addition function block (ADD_Function), assign input parameters D0 and D1, map the 

output to D2, and assign the result to i_Sum: 

ADD_Function (Number1:=D0, 

Number2:=D2, 

Result=>D10); 

i_Sum:=ADD_Function.Result; 

 

Note: 

ADD_Function is the function block instance. 

5.2.3 IF Statement 
The IF statement implements a single-branch conditional structure. 

Syntax: 

IF <Boolean_Expression> THEN 

<Statements>; 

END_IF; 

The <Statements> execute only if the <Boolean_Expression> evaluates to TRUE. <Statements> may contain a 

single statement, multiple statements, or be empty. 

 

 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 86 - 
 

 

Example: Check if the current temperature exceeds 60°C. If true, turn on the fan: 

// Variable declaration 

nTemp: INT;  (* Current temperature signal *) 

bFan: BOOL;  (* Fan ON/OFF signal *) 

// Program 

nTemp:=80; 

IF nTemp>60 THEN 

bFan:=TRUE; 

END_IF 

5.2.4 IF-ELSE Statement 
The IF-ELSE statement implements a dual-branch conditional structure. 

Syntax: 

IF <Boolean_Expression> THEN 

<Statements 1>; 

ELSE 

<Statements 2>; 

END_IF 

If <Boolean_Expression> is TRUE, <Statements1> executes; otherwise, <Statements2> executes. 

 
Example: Check if temperature is below 20°C to enable heating; otherwise, disable it: 

// Variable declaration 

nTemp: INT;  (* Current temperature signal *) 

bHeating: BOOL;  (* Heater ON/OFF signal *)  

// Program 

IF nTemp<20 THEN 

bHeating:=TRUE; 

ELSE 

bHeating:=FALSE; 

END_IF 

Nested IF-ELSE (Multi-Branch): 

IF <Boolean_Expression1> THEN 

IF <Boolean_Expression 2> THEN 

<Statements 1>; 

ELSE 

<Statements 2>; 

END_IF 

ELSE 

<Statements 3>; 

END_IF 

3) IF..ELSIF..ELSE (Multi-Branch): 

Syntax: 

IF <Boolean_Expression 1> THEN 

<Statements 1>; 

ELSIF <Boolean_Expression 2> THEN 

<Statements 2>; 

ELSIF <Boolean_Expression 3> THEN 

<Statements 3>; 

... 

... 

ELSE 

<Statements n>; 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 87 - 
 

END_IF 

 

Executes <Statements1> if <Boolean_Expression1> is TRUE. If false, evaluates subsequent ELSIF conditions 

sequentially. Executes <Statements n> only if all conditions are FALSE. 

 
 

Notes: 

➢ An IF statement must include at least one IF, THEN, and END_IF. 

➢ Keyword: Use ELSIF (not ELSEIF). 

➢ Conditions are terminated by THEN. 

 

5.2.5 CASE Statement 
The CASE statement enables multi-branch selection based on the value of an expression. 

Syntax: 

CASE <Condition_Variable> OF 

<Value1>: <Statements1>; 

<Value2>: <Statements2>; 

<Value3, Value4, Value5>: <Statements3>; 

<Value6..Value10>: <Statements4>; 

<Value n>: <Statements n>; 

ELSE 

<Else_Statements>; 

END_CASE; 

Execution Logic: 

⚫ If the value of the <Condition_Variable> equals <Value_i>, execute <Statements_i>. 

⚫ If no specified value matches the conditional variable, execute the <Else_Statements>. 

⚫ When multiple values require identical operations, list them consecutively separated by commas to execute 

shared instructions, as shown in line 4 of the example. 

⚫ For value ranges requiring identical operations, specify the start and end values separated by two dots (..) 

to execute shared instructions, as shown in line 5 of the example. 

Example: When the state is 1 or 5, Device 1 operates and Device 3 stops; for state 2, Device 2 stops and Device 

3 operates; for states 10 to 20 (inclusive), Devices 1 and 3 operate simultaneously. In all other cases, Devices 1, 2, 

and 3 stop. Implementation code is as follows: 

// Variable declaration 

nDevice1, nDevice2, nDevice3:BOOL; (*Device 1..3 switch control signals*) 

nState:INT; (*Current state signal*) 

// Program 

CASE nStateOF 

1.5: 

nDevice1:=TRUE; 

nDevice3:=FALSE; 

2: 

nDevice2:=FALSE; 

nDevice3:=TRUE; 

10..20: 

nDevice1:=TRUE; 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 88 - 
 

nDevice3:=TRUE; 

ELSE 

nDevice1:=FALSE; 

nDevice2:=FALSE; 

nDevice3:=FALSE; 

END_CASE; 

Execution of the CASE statement: 

⚫ When nState is 1 or 5: Device 1 turns on and Device 3 turns off. 

⚫ When nState is 2: Device 2 turns off and Device 3 turns on. 

⚫ When nState is 10~20: Device 1 and Device 3 turn on. 

⚫ In all other cases: Devices 1, 2, and 3 turn off. 

 

 
Notes: 

● The expression in a CASE statement must evaluate to an integer value. 

● The ELSE clause is optional; some implementations may use only the CASE...OF…END_CASE structure. 

 

5.2.6 FOR Loop Statement 
The FOR loop initializes a variable, repeats nested statements while a condition is TRUE, evaluates iteration 

expressions, and terminates when the condition becomes FALSE. 

Syntax: 

FOR <Variable> := <Initial_Value> TO <Target_Value> {BY <Step>} DO 

<Statements> 

END_FOR; 

Execution sequence: 

Check if the <Variable> lies within the range from <Initial_Value> to <Target_Value>. 

If <Variable> is less than <Target_Value>, execute <Statements>. 

If <Variable> exceeds <Target_Value>, skip the loop. 

After each iteration, increment <Variable> by the specified <Step> The step can be any integer value (default: 

1 if unspecified). Terminate the loop when <Variable> exceeds <Target_Value>. 

Conceptually, a FOR loop operates like a copier: a preset number of iterations (copies) is defined, and the loop 

stops once the count is reached. 

The FOR loop is the most common iteration structure, designed for fixed-count repetition. However, its 

flexibility allows implementation of other loop patterns through varying coding approaches. A practical example is 

provided below to demonstrate its usage. 

Example: 

Calculating 2⁵ using a FOR loop: 

// Variable declaration 

Counter:INT; (*Loop counter*) 

Var1:INT; (*Output result*) 

// Program 

FOR Counter:= 1 TO 5 BY 1 DO 

Var1:= Var1 * 2; 

END_FOR; 

If Var1’s initial value is 1, its final value becomes 32 after the loop. 

 

Note: 

If the <Target_Value> equals the <Variable> limit value, the loop becomes infinite. For example, if the counter 

variable (e.g., Counter of type SINT, range: -128 to 127) is assigned a <Target_Value> of 127, the controller enters 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 89 - 
 

an infinite loop. Thus, avoid setting <Target_Value> to limit values. 

 

5.2.7 WHILE Loop Statement 
The WHILE loop operates similarly to the FOR loop but differs in its termination condition: it uses an arbitrary 

Boolean expression to determine iteration. 

Syntax: 

WHILE <Boolean_Expression> 

<Statement>; 

END_WHILE; 

Execution sequence: 

Evaluate the <Boolean_Expression>. 

If the result is TRUE, execute <Statement> and repeat. 

If the initial evaluation is FALSE, skip <Statement> and exit the loop immediately. The execution flow is as 

shown below. 

 
Note: 

➢ If the <Boolean_Expression> remains TRUE indefinitely, an infinite loop occurs. Avoid this by modifying loop 

conditions, e.g., using increment/decrement counters. 

 

A WHILE loop behaves like controlling a motor in an industrial setting: the motor runs continuously while the 

"Start" button is pressed (Boolean = TRUE) and stops immediately when the "Stop" button is pressed (Boolean = 

FALSE).  

Example 7.X: Execute the loop body as long as the counter is non-zero. 

// Variable declaration 

Counter:INT; 

Var1:INT; (*Counter*) 

// Program 

WHILE Counter <> 0 DO 

Var1:= Var1 * 2; 

Counter := Counter - 1; 

END_WHILE 

In a certain sense, WHILE loops are more powerful than FOR loops because they do not require prior knowledge 

of the iteration count before execution. Consequently, only these two loop types are necessary in some scenarios. 

However, when the exact number of iterations is predetermined, FOR loops are preferable as their fixed structure 

inherently prevents infinite loops. 

5.2.8 Repeat Loop 
The REPEAT loop differs from the WHILE loop because it checks the termination condition after executing the 

loop. This ensures the loop executes at least once, regardless of the initial condition. 

Syntax: 

REPEAT 

<Statements> 

UNTIL 

<Boolean_Expression> 

END_REPEAT; 

 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 90 - 
 

Execution sequence: 

The <Statements> are executed if the <Boolean_Expression> evaluates to FALSE. 

The loop terminates when the <Boolean_Expression> becomes TRUE. 

If the <Boolean_expression> is TRUE after the first iteration, the <Statements> execute exactly once. 

 

Note: 

If the <Boolean_Expression> remains TRUE indefinitely, an infinite loop occurs. Avoid this by modifying loop 

conditions, e.g., using increment/decrement counters. 

Example: Demonstrating a REPEAT loop that terminates when the counter reaches 0. 

// Variable declaration 

Counter:INT; 

// Program 

REPEAT 

Counter:=Counter+1; 

UNTIL 

Counter=0 

END_REPEAT; 

In this case, the REPEAT loop executes at least once per program cycle. The Counter, defined as INT (0~32767), 

performs 32767 increment-by-1 operations per cycle. Due to the post-condition check, the is incremented once (to 1) 

before evaluation. The variable continues accumulating until it overflows to 0, thereby exiting the loop.  

 

5.2.9 EXIT Statement 
The EXIT statement immediately terminates the FOR, WHILE, or REPEAT loop, regardless of its termination 

condition. 

Syntax: 

EXIT; 

Example: Using EXIT to avoid division by zero in an iterative loop. 

FOR Counter:=1 TO 5 BY 1 DO 

INT1:=INT1/2; 

IFINT1= 0THEN 

EXIT; (*Prevent division by zero*) 

END_IF 

Var1:=Var1/INT1; 

END_FOR 

When INT1 equals 0, the EXIT statement terminates the FOR loop immediately. 

 

5.2.10 CONTINUE Statement 
The CONTINUE statement, an extension based on the IEC 61131-3 standard, can be used within FOR, WHILE, 

or REPEAT loops. It skips the remaining code in the current iteration and immediately starts a new loop iteration. In 

nested loops, CONTINUE affects only the innermost loop containing it. 

Syntax: 

CONTINUE; 

Example: Using CONTINUE to avoid division by zero in an iterative loop. 

// Variable declaration 

Counter:INT; (*Loop counter*) 

INT1, Var1:INT; (*Intermediate variables*) 

Erg:INT; (*Output result*) 

// Program 

FOR Counter:=1 TO 5 BY 1 DO 

INT1:=INT1/2; 

IF INT1=0 THEN 

CONTINUE; (*To avoid division by zero*) 

END_IF 

Var1:= Var1 / INT1; (*Executed only if INT1 ≠ 0*) 

END_FOR; 

Erg:=Var1; 

5.2.11 RETURN Statement 
The RETURN statement terminates the execution of the current main program, subroutine, function block (FB), 

or function (FC). 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 91 - 
 

Syntax: 

RETURN; 

Example: Using RETURN to exit immediately when a condition is met. 

// Variable declaration 

nCounter:INT; 

bSwitch:BOOL; (*Switch signal*) 

// Program 

IF bSwitch=TRUE THEN 

RETURN; 

END_IF; 

nCounter:=nCounter+1; 

If bSwitch is FALSE, nCounter increments by 1 each cycle; if bSwitch is TRUE, nCounter retains its value from 

the previous cycle, and the RETURN statement exits the current program immediately. 

5.2.12 GOTO and LABEL Statements 
The GOTO statement enables unconditional jumps to a labeled code line. 

Syntax: 

GOTO <identifier>; 

LABEL <identifier>; 

<identifier> is placed at the start of a program line.  When GOTO is executed, control jumps to the line marked 

by the specified <identifier>. 

 

Note: 

➢ Avoid infinite loops by controlling jumps with conditional statements like IF. 

 

Example: Using GOTO to cycle a counter within 0..10. 

IF(D2100<10)THEN 

GOTO 1;  // Jump to label 1 

END_IF 

LABEL 0;  // Label 0 

D2100:=0; 

LABEL 1;  // Label 1 

D2100:=D2100+1; 

 

LABEL0 and LABEL1 are not variables, and require no declaration. 

The IF statement checks if the counter is within the 0~10. If true, the GOTO1 statement directs the program to 

jump to LABEL1 in the next cycle, executing D2100:=D2100+1 to increment the counter. Otherwise, it jumps to 

Label1 and executes nCounter:=0 to reset the counter. This functionality can also be implemented with FOR, WHILE, 

or REPEAT loops. GOTO statement should generally be avoided, as it reduces code readability and maintainability. 

5.2.13 Comment 
Comments are critical in programs, enhancing readability without affecting execution. In the ST editor, 

comments can be added anywhere in the declaration or execution sections. 

The ST language supports two comment formats: 

Multi-line comments enclosed between (* and *), allowing block annotations.  

Single-line comments starting with //, extending to the end of the line.  

5.3 ST Language Instructions 

5.3.1 Program Control Instructions 
Instruction Description Example 

EI Enable interrupt EI(); 

DI Disable interrupt DI(); 

5.3.2 Bit Processing Instructions 
Instruction Description Example 

ZRST Batch bit reset ZRST(Address, Number); 

ZSET Batch bit set ZSET(Address, Number); 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 92 - 
 

5.3.3 Pointer Instructions 
Instruction Description Example 

PTGET Pointer assignment PTGET (Pointer, Target); 

PTINC Pointer address increment by 1 PTINC (Pointer); 

PTDEC Pointer address decrement by 1 PTDEC (Pointer); 

PTADD Pointer address addition PTADD(Source, Offset, Target); 

PTSUB Pointer address subtraction PTSUB(Source, Offset, Target); 

PTMOV Pointer assignment between variables PTMOV(Source, Target); 

5.3.4 Numeric Conversion Instructions 
Instruction Description Example 

TO_BOOL Convert variable to BOOL type TO_BOOL(Source); 

TO_INT Convert variable to INT type TO_INT(Source); 

TO_DINT Convert variable to DINT type TO_DINT(Source); 

TO_REAL Convert variable to REAL type TO_REAL(Source); 

5.3.5 Mathematical Function Instructions 
Instruction Description Example 

ABS Single-word absolute value ABS(Source); 

SQT Single-word square root SQT(Source); 

LN Natural logarithm LN(Source); 

LOG Common logarithm LOG(Source); 

EXP Natural exponent EXP(Source); 

POWER Exponentiation POWER(Source1, Source2); 

SIN Sine function SIN(Source); 

COS Cosine function COS(Source); 

TAN Tangent function TAN(Source); 

ASIN Arcsine function ASIN(Source); 

ACOS Arccosine function ACOS(Source); 

ATAN Tangent function ATAN(Source); 

5.3.6 Data Processing Instructions 
Instruction Description Example 

SHL Word left shift SHL(Source, Number); 

SHR Word right shift SHR(Source, Number); 

MAX Take maximum value of words MAX (Start, Number); 

MIN Take minimum value of words MIN (Start, Number); 

SEL Select between two words based on 

condition 

SEL (Condition, Data1, Data2); 

5.3.7 String Processing Instructions 
Instruction Description Example 

STRCLEAR Clear string STRCLEAR (String); 

STRDELET Delete string STRDELET(Source, DeleteLength, DeletePos, Result); 

STRADD Concatenate strings STRADD(String1,String2,Result); 

STRLEN Get string length STRLEN(Source, Length); 

STRRIGHT Read string from right side STRRIGHT(Source, Result, Length); 

STRLEFT Read string from left side STRLEFT(Source, Result, Length); 

STRMIDR 
Read string from specified 

position 
STRMIDR(Source, Result, StartPos, ReadLength); 

STRMIDW 
Replace string at specified 

position 
STRMIDW(Replace, Source, StartPos, ReplaceLength); 

STRINSERT 
Insert string at specified 

position 
STRINSERT(Source, Insert, InsertPos, Result); 

STRINSTR Search for string STRINSTR(Search, Source, ReturnPos, StartPos); 

STRCMP Compare strings STRCMP(String1, String2, Result); 

5.3.8 Timer Instruction 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 93 - 
 

Instruction Description Example 

DTPR Pulse timer instruction 

DTPR(Enable:=, 

PT:=, 

R:=, 

Q=>, 

ET=>); 

DTON On-delay timer instruction 

DTON(Enable:=, 

PT:=, 

R:=, 

Q=>, 

ET=>); 

DTOF Off-delay timer instruction 

DTOF(Enable:=, 

PT:=, 

R:=, 

Q=>, 

ET=>); 

DTACR Accumulation timer instruction 

DTACR(Enable:=, 

PT:=, 

R:=, 

Q=>, 

ET=>); 

5.3.9 MC Axis Control Instructions 
Instruction Description Comment 

MC_Power Enable axis control  

MC_Reset Reset fault  

MC_Home Homing  

MC_Stop Stop  

MC_MoveVelocity Velocity control  

MC_Jog Jog  

MC_Move Positioning  

MC_ReadAxisError Read axis error  

MC_ReadPosition Read actual position  

MC_ReadStatus Read axis status  

MC_TorqueControl Torque control  

MC_SetPosition Set position  

MC_MoveSuperImposed Superimposed motion  

MC_TouchProbe Touch probe  

MC_Linear Linear interpolation  

MC_Circle_CW Clockwise circular interpolation  

MC_Circle_CCW Counter-clockwise circular interpolation  

MC_MoveBuffer Multi-segment move  

MC_MoveAbsolute Absolute move  

MC_MoveRelative Relative move  

MC_ReadVelocity Read actual velocity  

MC_MoveFeed Feed-interrupt move  

MC_Halt Motion halt  

MC_SyncTorqueControl Synchronized torque control  

MC_ReadActualTorque Read actual torque  

MC_FollowVelocity Velocity superposition control  

MC_ReadDigitalInput Read digital inputs  

MC_MoveVelocityCSV CSV-based variable pulse width velocity control  

MC_SyncMoveVelocity CSV-based synchronized velocity control  

MC_MoveThreeDimensionalCircular 3D circular interpolation  

MC_MoveSpiral Spiral interpolation  

MC_SetAxisConfigPara Axis parameter configuration  

5.3.10 Axis Group Instructions 
Instruction Description Comment 

MC_MoveLinear Linear interpolation  



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 94 - 
 

MC_MoveCircular Circular interpolation  

MC_GroupStop Stop axis group motion  

MC_GroupPause Pause axis group motion  

MC_AddAxisToGroup Add axis to group  

MC_RemoveAxisFromGroup Remove axis from group  

MC_PathAdd Path addition  

MC_PathMov Path motion execution  

MC_SetForwardLookingPara Set forward-looking parameters  

5.3.11 Electronic Cam Instructions 
Instruction Description Comment 

MC_GearIn Engage gear synchronization  

MC_GearOut Disengage gear synchronization  

MC_CombineAxes Dual-spindle gear synchronization  

MC_CamIn Engage cam profile  

MC_CamOut Disengage cam profile  

MC_GenerateCamTable Generate/update cam table  

MC_Phasing Master axis phase offset  

MC_GetCamTablePhase Get cam table phase value  

MC_GetCamTableDistance Get cam table displacement  

MC_GenerateTappet Generate/update tappet profile  

MC_GetCamTable Get cam table data  

MC_RotaryCut Rotary cutting  

MC_ChasingCut Chasing cutting  

MC_GetCamTableVelocityRatio Get cam table velocity ratio  

5.3.12 EtherCAT Communication Instructions 
Instruction Description Comment 

E_WriteParameter_CoE Write CoE slave axis parameters  

E_ReadParameter_CoE Read CoE slave axis parameters  

5.3.13 Local High-Speed Counter Instructions 
Instruction Description Comment 

HC_Preset Preset high-speed counter value  

HC_Counter Enable high-speed counter  

HC_TouchProbe Enable high-speed counter touch 

probe 

 

HC_Compare Configure high-speed counter 

comparison 

 

HC_ArrayCompare Configure high-speed counter array 

comparison 

 

HC_StepCompare Configure high-speed counter step 

comparison 

 

5.4 Smart Input and Tooltips 

5.4.1 Engineering Example 
MC_Power usage example (ST language): 

MC_Power(Enable := bEnable, // Enable pin 

Axis := dAxis, // Axis number 

Status => bStatus, // Axis enable flag 

Busy => bBusy, // Busy flag 

Error => dError, // Instruction error flag 

ErrorID => dErrorID); // Error code 

5.4.2 Quick Input 
After typing an instruction name, press the TAB key to auto-complete its parameters. If a parameter's default 

value is "???", it must be explicitly assigned. Other parameters are optional based on requirements. 



Programming Language                                                                    SH100/300/SH500 PLC Programming and Application Manual  

- 95 - 
 

MC_Jog(Enable:=??, 

Axis:=??, 

SpeedMode:=, 

Forward:=??, 

Backward:=??, 

Velocity:=??, 

Acceleration:=??, 

Deceleration:=, 

Jerk:=??, 

Busy=>, 

Aborted=>, 

Error=>, 

ErrorID=>); 

5.4.3 Mouse Hover Tooltips 
Variables: Displays variable name, data type, and comment. FB/FC/Instructions: Displays function name, 

function type (FB/FC), comment, input/output parameters, and parameter descriptions (name, type, comment). 

5.5 Programming Language (LD) 

Ladder Diagram (LD) is a graphical programming language with a structure resembling electrical circuits. It 

consists of multiple networks (also called rungs), each starting with a vertical power rail (energy flow line) on the 

left. A network comprises contacts, coils, function blocks (functions, function blocks, programs, execution blocks, 

actions, methods), jumps, labels, and connecting wires. 

Key elements in LD include contacts, coils, function blocks, branches, and comments. These elements are added 

to networks through inserting, dragging, wiring, copying, and pasting operations to form execution logic. 

LD supports online debugging for monitoring, writing values, forcing values, and breakpoints. 

For detailed LD specifications, please refer to AutoSoft.chm. In AutoSoft's menu bar, select Help > Help Manual 

to open the required manual. 

 

5.6 Sequential Function Chart (SFC) 

The SFC is an intuitive graphical programming language designed for process-oriented programming. All SFC 

elements can be accessed via corresponding icons or menu items in the SFC toolbar and menu. Users can click 

specific icons to insert desired elements and define their properties in the SFC element properties dialog. The SFC 

toolbar and menu also provide shortcuts for adding connection lines, allowing users to establish connections between 

SFC elements as needed. For detailed SFC specifications, refer to AutoSoft.chm. In AutoSoft's menu bar, select Help > 

Help Manual to open the required manual. 

 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 96 - 
 

6 Extension Module Configuration 

6.1 SH Local Right Extension Module Configuration 

The SH controller can support up to 16 local extension modules. Access to these local extensions is implemented 

through module configuration. The hardware configuration diagram for connecting local extension modules to the 

SH is shown below. 

 
The supported local extension module models are listed in the table below. 

I/O Module Module Description 

SH-1600END 16-channel digital input module 

SH-0800END 8-channel digital input module 

SH-0016ETN 16-channel NPN digital output module 

SH-0016ETP 16-channel PNP digital output module 

SH-0808ETN 8-channel digital input module and 8-channel NPN digital output module 

SH-0808ETP 8-channel digital input module and 8-channel PNP digital output module 

SH-0008ETN 8-channel NPN digital output module 

SH-0008ETP 8-channel PNP digital output module 

SH-4AD 4-channel analog input module 

SH-4DA 4-channel analog output module 

SH-4PT 4-channel thermal resistance temperature detection input module 

SH-4TC 4-channel thermocouple temperature detection input module 

SH-2WT 2-channel input weighing module 

6.1.1 Extension Module Auto-Scan 
Module configuration provides two methods: 

(1) Method 1: Manually configure each module one by one based on the actual connection order, as shown in 

the figure below. (Note: The configuration order must match the actual connection sequence; otherwise, a 

Special Module Error will be reported.) 

 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 97 - 
 

 
 

(2) Method 2: Right-click on "Extension Modules", select "Auto-Scan", and verify whether the scanned 

modules match the actual connections. Then click "Update" to automatically add the scanned modules to 

the configuration, as shown in the figure below: 

 

 

6.1.2 IO Module Configuration 
Take SH-0808ETP/SH0016ENT as examples: 

1. Double-click "Extension Modules" in the Project Manager area to enter the interface as below. 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 98 - 
 

 
2. Click the position number on the rail corresponding to the actual installation location of the extension 

module, and double-click the module on the right or hold the left mouse button to drag the module onto the 

rail to configure the extension module. 

 
 

When connected to the main module, the extension module’s X ports and Y ports are numbered sequentially 

following the X and Y port numbering of the main module. For example: If the main module is a SH universal type 

and a SH-0808ETP extension module is connected, the X ports start from X10–X16 and Y ports from Y10–Y16. If 

a SH0016ENT module is connected next, its output ports will be Y20–Y27 and Y30–Y37. Subsequent modules 

follow this numbering pattern accordingly. 

 

Note: 

➢ X and Y use octal numbering. 

➢ After adding an IO extension module, the system automatically assigns addresses to X/Y ports, displayed in 

order above the module. Manual address assignment is currently not supported. 

 

IO Module Function Parameter Settings 

Double-click the added module to configure parameters such as digital I/O input filter settings, output 

configurations, and module version information, as shown in the figure below. 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 99 - 
 

 
Enter the starting address D100 in "Module ID" and click "Automatically assign address” for addresses 

allocation. 

⚫ For input channels, set input filter time of 0ms~63.75ms. 

⚫ For output channels, configure the output settings. 

⚫ Output Hold: Set the ON/OFF of output channels. 

⚫ Output Set Value: Determines the output channel states based on set values. 

⚫ Offline Output Value: When the output mode is set to "Output Set Value," the output channels follow this 

parameter. 

After completing the above configurations, compile, download, and debug as shown in the figure below: 

 

 

6.1.3 4PT Module Configuration 
Taking the first channel of SH-4PT as an example, connect a PT100 sensor to read its current temperature: 

1. Double-click "Extension Modules" in the Project Manager area to enter the interface as below. 

 
2. Click the position number on the rail corresponding to the actual installation location of the extension 

module, and double-click the module on the right or hold the left mouse button to drag the module onto the 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 100 - 
 

rail to configure the extension module, as shown in the figure below: 

 
3. Double-click the added 4PT module to configure parameters such as temperature unit (°C/°F), sampling 

time, sensor type, and filter time. 

 
Channel Parameters Description 

⚫ Module Information: Module ID, module version, module error status. 

⚫ Basic Configuration: Temperature unit (°C/°F), sampling time (default to 500ms). 

⚫ Channel Enable: Enabled by default. When enabled, channel signals are detected. 

⚫ Temperature Offset: When enabled, the measured temperature value + offset value is displayed as the final 

value. Disabled by default. 

⚫ Limit Detection: When enabled, an alarm is triggered if the temperature exceeds the upper limit or drops 

below the lower limit. 

⚫ Sensor Disconnection Detection: When enabled, an alarm is triggered if the sensor disconnection is 

detected. 

⚫ Sensor Type: PT100, PT500, PT1000, CU50, CU100, KTY84, NTC-5K, NTC-10K, etc. 

⚫ Filter Time: Default to 5s. 

⚫ Temperature Value: Current filtered temperature value. 

⚫ Quick Address Assignment: Enter a register address (e.g., D100) to "Module ID" and click "Automatically 

assign address" to allocate addresses for all channels. 

4. After configuration, compile, download, and monitor. The D103 register displays the current sensor 

temperature value, as shown in the figure below: 

 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 101 - 
 

 
 

6.1.4 4TC Module Configuration 
Taking the first channel of SH-4TC as an example, connect a K-type sensor to read its current temperature: 

1. Double-click "Extension Modules" in the Project Manager area to enter the interface as below. 

 
 

2. Click the position number on the rail corresponding to the actual installation location of the extension 

module, and double-click the module on the right or hold the left mouse button to drag the module onto the 

rail to configure the extension module.  

 
 

3. Double-click the added 4TC module to configure parameters such as temperature unit (°C/°F), sampling 

time, sensor type, and filter time. 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 102 - 
 

 
  



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 103 - 
 

Channel Parameters Description 

⚫ Module Information: Module ID, module version, module error status, and cold spot temperature. 

⚫ Basic Configuration: Temperature unit (°C/°F), sampling time (default to 250ms). 

⚫ Channel Enable: Enabled by default. When enabled, channel signals are detected. 

⚫ Temperature Offset: When enabled, the measured temperature value + offset value is displayed as the final 

value. Disabled by default. 

⚫ Limit Detection: When enabled, an alarm is triggered if the temperature exceeds the upper limit or drops 

below the lower limit. 

⚫ Sensor Disconnection Detection: When enabled, an alarm is triggered if the sensor disconnection is 

detected. 

⚫ Sensor Type: K, J, E, B, N, R, S, T-type. 

⚫ Filter Time: Default to 5s. 

⚫ Temperature Value: Current filtered temperature value. 

⚫ Quick Address Assignment: Enter a register address (e.g., D100) to "Module ID" and click "Automatically 

assign address" to allocate addresses for all channels. 

4. After configuration, compile, download, and monitor. The R105 register displays the current sensor 

temperature value, as shown below. 

 
 

6.1.5 4AD Module Configuration 
Taking the first channel of SH-4AD as an example, with a port input voltage of 5V, to read the analog-to-digital 

converted value: 

1. Double-click "Extension Modules" in the Project Manager area to enter the interface as below. 

 
 

2. Click the position number on the rail corresponding to the actual installation location of the extension 

module, and double-click the module on the right or hold the left mouse button to drag the module onto the 

rail to configure the extension module.  



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 104 - 
 

 
 

3. Double-click the added 4AD module to configure parameters such as input mode, filter settings, and 

conversion range, as shown in the figure below. 

 
Channel Parameters Description 

⚫ Module Information: Module ID, module version, and module error status. 

⚫ Channel Enable: Enabled by default. When enabled, channel signals are detected. 

⚫ Filter Time: Default to 8 (adjustable range: 0~255). 

⚫ Input Mode: Three modes available.  

Input Mode Output Range 

-10V~10V -20000~20000 or -32000~32000 

-20mA~20mA -20000~20000 or -32000~32000 

4mA~20mA -20000~20000 or -32000~32000 

 

⚫ Sampled Data: Current filtered digital value converted from the analog input. 

⚫ DO Range: Analog input values are converted to digital values within -20000~20000 or -32000~32000. 

4. After configuration, compile, download, and monitor. W103=9989 displays the converted analog value, as 

shown in the figure below: This is shown in the figure below: 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 105 - 
 

 

6.1.6 4DA Module Configuration 
Taking the first channel of SH-4DA as an example, set the mode value to read the analog-to-digital converted 

value: 

1. Double-click "Extension Modules" in the Project Manager area to enter the interface as below. 

 
2. Click the position number on the rail corresponding to the actual installation location of the extension 

module, and double-click the module on the right or hold the left mouse button to drag the module onto the 

rail to configure the extension module. This is shown in the figure below: 

 
 

3. Double-click the added 4DA module to configure parameters such as output mode, filter settings, and 

conversion range, as shown in the figure below. 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 106 - 
 

 
Channel Parameters Description 

⚫ Module Information: Module ID, module version, and module error status. 

⚫ Channel Enable: Enabled by default. When enabled, channel signals are detected. 

⚫ Conversion Mode: Supports voltage and current output. 

 

Output Mode Range 

-10V~10V -20000~20000 or -32000~32000 

-20mA~20mA -20000~20000 or -32000~32000 

4mA~20mA -20000~20000 or -32000~32000 

⚫ Output Mode on Stop: When the host stops or a module error occurs, the output ports can be configured 

with three stop modes: 

⚫ Zero Output: Output is set to 0. 

⚫ Hold Output: Output retains the last value. 

⚫ Preset Output: Output follows a predefined value. 

4. After configuration, compile, download, and monitor. Setting D3=10000 will output 5V on Channel 1, as 

shown below. 

 

 

6.2 SH Local Left Extension Module Configuration 

6.2.1 SH Extension Hardware Configuration 
The connection diagram for the left extension modules is shown below. 

 

 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 107 - 
 

6.2.2 SH Left Extension Supported Types 
The SH series controller can be extended with up to 1 extension. There are 11 types of extension available, each 

supporting different functions, as detailed in the table below. 

No. Model Specification 

1 SH-RS485 2×RS485 

2 SH-RS485-RTC 2×RS485+real-time clock 

3 SH-4DI 4-channel digital input 

4 SH-4DI-RTC 4-channel digital input+real-time clock 

5 SH-4DO-TN 4-channel drain type digital output 

6 SH-4DO-TN-RTC 4-channel drain type digital output+real-time clock 

7 SH-2AD1DA-I 2-channel analog input, 1-channel analog output, current mode 

8 SH-2AD1DA-I-RTC 2-channel analog input, 1-channel analog output (current mode) + 

real-time clock 

9 SH-2AD1DA-V 2-channel analog input, 1-channel analog output, voltage mode 

10 SH-2AD1DA-V-RTC 2-channel analog input, 1-channel analog output (voltage mode) + 

real-time clock 

11 SH-RTC Real-time clock 

6.2.3 Left Extension Auto-Scan 
There are two methods for configuring extensions: 

(1) Method 1: Configure manually based on the actual physical connection order of modules, as shown in the 

figure below. (Note: The configuration order must match the actual connection sequence; otherwise, a 

module error will be reported.) 

 
 

(2) Method 2: Right-click on "Extension Modules", select "Auto-Scan", and verify whether the scanned 

modules match the actual connections. Then click "Update" to automatically add the scanned modules to 

the configuration, as shown in the figure below: 

 
 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 108 - 
 

6.2.4 Extension Configuration Example 
Using the SH-4DO-RTC module as an example: 

(1) After installing the extension, right-click "Extension Modules" under Project Manager in the software and 

select the "Auto-Scan” to scan and identify extension modules. 

 
(2) Click "Update Configuration" to automatically add the scanned module to the hardware configuration, as 

shown in the figure below. 

 
 

(3) Double-click the added extension to assign addresses, such as Y, M, or custom variables. (Note: Avoid 

address conflicts with the main unit or right extension modules.) Here, the Y port output addresses are 

mapped to Y30~Y33, as shown below: 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 109 - 
 

 
 

(4) After completing the configuration, compile, download, and invoke the program. When M10 is turned ON, 

Y30 outputs, as illustrated below: 

 

 
 

  



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 110 - 
 

Extension Type Descriptions 

(1) SH-RS485 Extension: The SH supports 2×RS-485, compatible with Freeport protocol, Modbus RTU, and 

N:N protocol. The communication port configuration is as follows: 

No. Extension Channel Software Port 

Configuration 

1 1A\1B- COM1 

2 2A\2B- COM2 

(2) SH-RTC Extension: The SH series supports extending 1×RTC. The clock values can be modified via clock 

instructions. No configuration is required; the extension is automatically recognized by the software. The 

relevant SD special registers are as follows: 

Year Month Day Hour Minute Second Week 

SD60 SD61 SD62 SD63 SD64 SD65 SD66 

1. Quick clock calibration: When the PC is connected to the PLC, navigate to the menu bar: PLC → PLC 

Clock → Get Current Clock → Set PLC Clock, as shown below. 

 
(3) Analog Extension 

1. The SH controller supports 1-channel left analog extension (SH-2AD1DA-I, SH-2AD1DA-V, or an 

integrated RTC module). Users can select based on requirements. Double-click the added module, and 

configure parameters such as conversion mode, filter parameters, and analog-to-digital conversion range 

for the channels in the pop-up window, as shown below: 

 
 

6.3 SH-RTU-ETC Coupler 

The SH-RTU-ETC coupler can support up to 16 local extension modules. Access to these local extensions is 

implemented through module configuration. The hardware configuration diagram for connecting local extension 

modules to the SH is shown below.  

 

The supported local extension module models are listed in the table below. 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 111 - 
 

I/O Module Description 

SH-1600END 16-channel digital input module 

SH-0800END 8-channel digital input module 

SH-0016ETN 16-channel NPN digital output module 

SH-0016ETP 16-channel PNP digital output module 

SH-0808ETN 8-channel digital input module and 8-channel NPN digital 

output module 

SH-0808ETP 8-channel digital input module and 8-channel PNP digital 

output module 

SH-0008ETN 8-channel NPN digital output module 

SH-0008ETP 8-channel PNP digital output module 

SH-4AD 4-channel analog input module 

SH-4DA 4-channel analog output module 

SH-4PT 4-channel thermal resistance temperature detection input 

module 

SH-4TC 4-channel thermocouple temperature detection input module 

SH-2WT 2-channel input weighing module 

 

6.3.1 Module Auto-Scan Configuration 
Module configuration provides two methods: 

(1) Method 1: Manually configure each module one by one based on the actual connection order, as shown in the 

figure below. (Note: The configuration order must match the actual connection sequence; otherwise, the coupler 

will trigger an alarm.) 

1. In Project Manager area, double-click EtherCAT → check Enable for “Enable Control” to activate 

EtherCAT, as shown in the figure below. 

 
2. Right-click EtherCAT → Add Device → select SH-RTU-ETC and double-click to add it to the network, 

as shown in the figure below. 

 

 
 

3. Double-click the added SH-RTU-ETC, select Slot Configuration in the pop-up window, and double-click 

to add the required modules, as shown in the figure below. 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 112 - 
 

 
 

Note: 

➢ The physical positions of connected modules must align with the configuration order; otherwise, an alarm will 

be generated. 

 

(2) Method 2: In Project Manager area, double-click EtherCAT → Enable to activate EtherCAT. After completion, 

download the project, as shown in the figure below. 

 
1. Right-click and select the Auto-Scan. Verify whether the scanned modules match the physical connections, then 

click Update Configuration to automatically add the scanned modules to the configuration, as shown in the 

figure below. 

 
  

Note: 

➢ To use the ECAT auto-scan function, ensure the XML files of the slave devices are correctly imported first. 

Then, check the Enable to confirm the PLC’s current running program has EtherCAT configuration enabled. If 

Enable Control is disabled, the auto-scan function cannot be used. 

6.3.2 IO Module Configuration Example 
Using SH0016ENT as an example:  

1. In Project Manager area, double-click EtherCAT and select Enable. After configuration, if the currently 

running PLC project does not have this function activated, download the project once, as shown in the 

figure below. 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 113 - 
 

 
 

2. Right-click and select the Auto-Scan. Verify whether the scanned modules match the physical connections, 

then click Update Configuration to automatically add the scanned modules to the configuration, as shown 

in the figure below. 

 

 
 

3. Double-click SH-RTU-ETC. In the pop-up window, configure parameters such as Process Data, Startup 

Parameter, Slots Configuration, and I/O Mapping, as shown in the figure below. 

 
Coupler Parameter Descriptions 

⚫ Basic Information: Displays device name, manufacturer name, ID, version, etc. 

⚫ General Setting: Supports SM or DC synchronous mode. (Recommended to keep default.) 

⚫ Process Data: Configures extended I/O modules for BOOL operations or word operations, and reads the 

communication status and error information of the SH-RTU-ETC coupler. 

⚫ Startup Parameter: Initializes module parameters. (Recommended to keep default.) 

⚫ Slots Configuration: Supports 16 slot positions. Modules can be added to slots by double-clicking. Ensure 

the module configuration order matches physical connections. 

⚫ I/O Mapping: Binds module addresses to corresponding soft element addresses (supports D/R/W word 

elements and X/Y/M/S bit elements). Right-click Auto-Fill on the starting address to quickly bind addresses, 

as shown in the figure below. 



Extension Module Configuration                                                      SH100/300/SH500 PLC Programming and Application Manual  

- 114 - 
 

 
 

4. Double-click the added module to configure the digital I/O mode as needed, as shown below: 

 

 
5. After configuration, invoke the program, compile, download, and debug, as shown below: 

 

 
 

Note: 

➢ Configuration for other modules of the SH-RTU-ETC coupler follows the right extension modules; details are 

not repeated here. 

➢ For details, please refer to the SH-RTU-ETC Coupler Manual. 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 115 - 
 

7 Serial Communication 

7.1 Overview 

The SH controller integrates a built-in serial communication interface supporting baud rates of 9600, 19200, 

38400, 57600, and 115200 bps. The serial port configurations for SH series models are listed in the table below. 

Model 
SH100 Series SH300 Series SH500 Series 

/ SH301 SH311 SH511 SH522 SH523 SH524 

Serial 
Port 

Built-in 
1×RS232 
Built-in 
1×RS485 

Built-in 
1×RS485 
Expandable 
2×RS485 

Built-in 
1×RS485 
Expandable 
2×RS485 

Built-in 
1×RS485 
Expandable 
2×RS485 

Built-in 
1×RS485 
Expandable 
2×RS485 

Built-in 
1×RS485 
Expandable 
2×RS485 

Built-in 
1×RS485 
Expandable 
2×RS485 

7.1.1 Communication Protocol 
Protocol Description 

Free protocol Enables unrestricted data transmission/reception using XMT/RCV instructions. 

Modbus-RTU master Standard Modbus-RTU master for reading/writing data from/to slave devices via 

Modbus configuration. 

Modbus-RTU slave Standard Modbus-RTU slave. 

N:N protocol Proprietary protocol for the SH series, enabling data sharing between controllers. 

7.1.2 Port Mapping 
Host Software Communication 

Channel 

SH100 Series SH300 Series SH500 Series 

COM0 0* RS-232 port Built-in RS-485 port Built-in RS-485 port 

COM1 1* RS-485 port Extension port 

1A/1B 

Extension port 

1A/1B 

COM2 2* / Extension port 

2A/2B 

Extension port 

2A/2B 

*: The first operand of the MODRW instruction specifies the communication channel. 

7.1.3 Serial Port Transmission Medium 
We recommend to use shielded twisted pairs on RS485 bus, and twisted paird on 485 +, 485‑; The two ends of 

the bus are respectively connected with 120 Ω terminal resistors to prevent signal reflection; The reference ground 

GND of all Node 485 signals is connected together, 31 nodes max, and the distance between branches of each node 

should be within 3m. 

Communication termination resistor DIP switch: 

Located below the left extension interface.  

ON: Resistor enabled (factory default: ON). 

Switch configuration: 1 for RS485 communication; 2 for CAN communication. 

 

7.1.4 RS485 Serial Communication Networking 
 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 116 - 
 

 
 

7.2 Freeport Communication 

7.2.1 Freeport Protocol Configuration 
1. Freeport Protocol is a user-defined communication method for custom data formats. It enables data 

transmission and reception via dedicated instructions and supports both ASCII and binary formats. Freeport 

communication is only available when the PLC is in RUN mode. 

2. COM0/COM1/COM2 support the Freeport Protocol. The associated instructions include XMT (transmit) 

and RCV (receive). 

3. Double-click "COM" in the left Project Manager area, then select "Freeport Protocol" in the dialog box, as 

shown below. 

 
4. Configure the serial port settings and click "OK". The RCV and XMT instructions can then be used in the 

user program for data transmission/reception. 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 117 - 
 

 
Configurable Parameters 

Item Setting Description 

Baud rate 
115200, 57600, 38400, 19200, 9600, 

4800, 2400, 1200 (Default: 9600) 
- 

Data bit 7 or 8 (Default: 8) - 

Parity 
None/Odd/Even 

(Default: None) 
- 

Stop bit 1 or 2 (Default: 1) - 

Valid byte Low byte or High/Low bytes 

Data processing mode: 

Low byte: Only the low byte is 

transmitted/received; high byte is discarded. 

High/Low bytes: Both bytes are 

transmitted/received. 

Allow start character 

detection 
Enable/Disable (Default: Disable) - 

Start character 

detection 
0~255 (hex: 00~FF) 

Reception starts when the specified start 

character is detected. The character 

(including the start character) is stored in the 

buffer. 

Allow end character 

detection 
Enable/Disable (Default: Disable) - 

End character 

detection 
0~255 (hex: 00~FF) 

Reception stops when the specified end 

character is detected. The end character is 

stored in the buffer. 

Allow Intercharacter 

timeout 
Enable/Disable (Default: Disable) - 

Intercharacter timeout 0ms~65535ms 
Reception aborts if the interval between two 

received characters exceeds the set time. 

Allow interframe 

timeout 
Enable/Disable (Default: Disable) - 

Interframe timeout 0ms~65535ms 

Starts timing when RCV is activated and 

communication conditions are met. 

Reception aborts if the frame is not fully 

received within the time period. 

7.2.2 Program Example 
Example 1: Two PLC devices are configured with COM0 in Freeport communication mode. COM0 transmits 5 

bytes of data and then receives 6 bytes. Valid byte: Low byte. 

Transmit data: 55778899aa 

Receive data: 3489cd446688 

 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 118 - 
 

 
 

Notes: 

➢ Before transmitting data, ensure the receiving device has RCV enabled. 

➢ XMT (transmit) and RCV (receive) instructions cannot be executed simultaneously. Use SM flags to implement 

polling control for alternating transmission and reception. 

➢ Retrieve received data promptly to avoid overwriting by subsequent frames. 

 

7.3 Modbus Communication Protocol 

7.3.1 Overview 
The SH series PLC supports the Modbus-RTU protocol via serial ports, configurable as a master or slave. 

Link Characteristics 

1. Physical layer: RS232 or RS485. 

2. Link layer: Asynchronous transmission. 

⚫ Data bit: 8 bits (RTU). 

⚫ Baud rate: 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200. 

⚫ Parity: Even, odd, or none. 

⚫ Stop bit: 1 or 2 bits. 

3. Network: Up to 31 devices, with addresses ranging from 1 to 247. Broadcast is supported. 

⚫ RTU transmission mode. 

⚫ Data in hexadecimal format. 

⚫ Intercharacter interval must be <1.5 character times. 

⚫ No frame header/trailer; interframe interval must be ≥3.5 character times. 

4. CRC16 error checking. 

5. RTU frame structure (max. 256 bytes): 

Frame Field Address Funcode Data CRC 

Bytes 1 1 0~252 2 

6. Intercharacter interval calculation: 

⚫ Example (19200 baud): 

1.5 character times = (1/19200) × 11 × 1.5 × 1000 = 0.86 ms. 

3.5 character times = (1/19200) × 11 × 3.5 × 1000 = 2 ms. 

7.3.2 Modbus Function Codes 
(1) When the SH series PLC operates as a slave, it supports the following Modbus function codes: 01, 02, 03, 04, 05, 

06, 15, 16.  

Function Code 

(Decimal) 
Name Modbus Data Address Operable Element Type Description 

01 Read coils 01): xxxx Y, X, M, SM, S, T, C Read bits 

02 
Read discrete 

inputs 
12): xxxx X Read bits 

03 Read registers 43): xxxx4) D, SD, Z, T, C, R 
Read 

words 

05 
Write a single 

coil 
0: xxxx Y, M, SM, S, T, C Write bit 

06 
Write a single 

register 
4: xxxx D, SD, Z, T, C, R Write word 

15 Write multiple 0: xxxx Y, M, SM, S, T, C Write 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 119 - 
 

coils multiple 

bits 

16 
Write multiple 

registers 
4: xxxx D, SD, Z, T, C, R 

Write 

multiple 

words 

Note: 

1) “0” for coil 

2) “1” for discrete input 

3) “4” for register 

4) xxxx for logical address range: 1~9999 (protocol addresses start from 0). Each element type has an 

independent logical address range (1~9999). 

5) “0”, “1”, “4” do not have physical significance and are not involved in actual addressing. 

6) Do not use function code 05 or 15 to write to X elements. Writing to X elements will not trigger errors but 

will be ignored by the system. 

 

(2) Modbus Frame Format (Modbus-RTU) 

i. Function Code: 0x01(01) (Read Coils) 

Request frame format: slave address + 0x01 + coil start address + coil quantity + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X01 (function 

code) 

1 byte Read coils 

3 Coil start address 2 bytes High byte first, low byte last. 

4 Coil quantity 2 bytes High byte first, low byte last (N: Number of coils). 

5 CRC parity 2 bytes High byte first, low byte last. 

Response frame format: slave address + 0x01 + byte count + coil status + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X01 (function 

code) 

1 byte Read coils 

3 Byte count 1 byte Value: [(N/7)/8], where N is the number of coils read. 

4 Coil status [(N/7)/8] Each byte represents 8 coils. Unused bits in the last 

byte are padded with 0s. The least significant bit 

(LSB) corresponds to the lowest address coil. 

5 CRC parity 2 bytes High byte first, low byte last. 

ii. Function Code: 0x02(02) (Read Coils) 

Request frame format: slave address + 0x02 + coil start address + coil quantity + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X02 (function 

code) 

1 byte Read coils 

3 Coil start address 2 bytes High byte first, low byte last. 

4 Coil quantity 2 bytes High byte first, low byte last (N: Number of coils). 

5 CRC parity 2 bytes High byte first, low byte last. 

Response frame format: slave address + 0x02 + byte count + coil status + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X02 (function 

code) 

1 byte Read coils 

3 Byte count 1 byte Value: [(N/7)/8], where N is the number of coils 

read. 

4 Coil status [(N/7)/8] Each byte represents 8 coils. Unused bits in the 

last byte are padded with 0s. The least significant 

bit (LSB) corresponds to the lowest address coil. 

5 CRC parity 2 bytes High byte first, low byte last. 

iii. Function Code: 0x03(03) (Read Registers) 

Request frame format: slave address + 0x03 + register start address + register quantity + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X03 (function 

code) 

1 byte Read registers 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 120 - 
 

3 Register start 

address 

2 bytes High byte first, low byte last. 

4 Number of registers 2 bytes High byte first, low byte last (N: Number of coils). 

5 CRC parity 2 bytes High byte first, low byte last. 

Response frame format: slave address + 0x03 + byte count + register value + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X03 (function 

code) 

1 byte Read registers 

3 Byte count 1 byte Value: N*2 

4 Register value N*2 bytes Each register value is represented by two bytes, with the 

high byte first and low byte last. Registers are arranged in 

ascending address order. 

5 CRC parity 2 bytes High byte first, low byte last. 

iv. Function Code: 0x04(04) (Read Registers) 

Request frame format: slave address + 0x04 + register start address + register quantity + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X04 (function 

code) 

1 byte Read registers 

3 Register start 

address 

2 bytes High byte first, low byte last. 

4 Number of 

registers 

2 bytes High byte first, low byte last (N: Number of coils). 

5 CRC parity 2 bytes High byte first, low byte last. 

Response frame format: slave address + 0x04 + byte count + register value + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 
0X04 (function 

code) 
1 byte Read registers 

3 Byte count 1 byte Value: N*2 

4 Register value N*2 bytes 

Each register value is represented by two bytes, with the 

high byte first and low byte last. Registers are arranged in 

ascending address order. 

5 CRC parity 2 bytes High byte first, low byte last. 

v. Function Code: 0x05(05) (Write a Single Coil) 

Request frame format: slave address + 0x05 + coil address + coil status + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 
0X05 (function 

code) 
1 byte Write a single coil 

3 Coil address 2 bytes High byte first, low byte last. 

4 Coil status 2 bytes 
The valid write values are 0xFF00 (ON, 1) or 0x0000 

(OFF, 0), with the high byte first and low byte last. 

5 CRC parity 2 bytes High byte first, low byte last. 

Response frame format: slave address + 0x05 + coil address + coil status + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X05 (function 

code) 

1 byte Write a single coil 

3 Coil address 2 bytes High byte first, low byte last. 

4 Coil status 2 bytes The valid value is 0xFF00, with the high byte first and low 

byte last. 

5 CRC parity 2 bytes High byte first, low byte last. 

vi. Function Code: 0x06(06) (Write a Single Register) 

Request frame format: slave address + 0x06 + register address + register value + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X06 (function 

code) 

1 byte Write a single register 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 121 - 
 

3 Register address 2 bytes High byte first, low byte last. 

4 Register value 2 bytes High byte first, low byte last. 

5 CRC parity 2 bytes High byte first, low byte last. 

Response frame format: slave address + 0x06 + register address + register value + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X06 (function 

code) 

1 byte Write a single register 

3 Register address 2 bytes High byte first, low byte last. 

4 Register value 2 bytes High byte first, low byte last. 

5 CRC parity 2 bytes High byte first, low byte last. 

vii. Function Code: 0x0F(15) (Write Multiple Coils) 

Request frame format: slave address + 0x0F(15) + coil start address + coil quantity + byte count + coil status + 

CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X0F (function 

code) 

1 byte Write multiple single coils 

3 Coil start address 2 bytes High byte first, low byte last. 

4 Coil quantity 2 bytes High byte first, low byte last (N: Number of 

coils). 

5 Byte count 1 byte Value: [(N/7)/8], where N is the number of write. 

6 Coil status [(N/7)/8] Each byte represents 8 coils. Unused bits in the 

last byte are padded with 0s. The least significant 

bit (LSB) corresponds to the lowest address coil. 

7 CRC parity 2 bytes High byte first, low byte last. 

Response frame format: slave address + 0x0F(15) + coil start address + coil quantity + CRC parity. 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X0F (function 

code) 

1 byte Write multiple single coils 

3 Coil start address 2 bytes High byte first, low byte last. 

4 Coil quantity 2 bytes High byte first, low byte last. 

5 CRC parity 2 bytes High byte first, low byte last. 

viii. Function Code: 0x10(16) (Write Multiple Registers) 

Request frame format: slave address + 0x10(16) + register start address + register quantity + byte count + register 

value + CRC parity. 

 

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0X10 (function 

code) 

1 byte Write multiple registers 

3 Register start 

address 

2 bytes High byte first, low byte last. 

4 Number of 

registers 

2 bytes High byte first, low byte last (N: Number of coils). 

5 Byte count 1 byte Value: [(N/7)/8], where N is the number of write. 

6 Register value N*2 or (N*4)  

7 CRC parity 2 bytes High byte first, low byte last. 

Response frame format: slave address + 0x10 + register start address + register quantity + CRC parity. 

ix. Error Response Frame 0 

Error response format: slave address + (function code + 0x80) + error code + CRC parity.  

No. Data Byte Bytes Description 

1 Slave address 1 byte 1~247 (configured in communication settings) 

2 0×80+ function 

code 

1 byte Error function code** 

3 Error code 1 byte  

4 CRC parity 2 bytes High byte first, low byte last. 

Note: Error function code** = Requested function code＋0x80. 

 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 122 - 
 

Notes: 

1. Only soft elements of the same type can be read in a single frame. For example, users cannot combine X 

and Y elements in the same frame. 

2. The address range and data length for reading must not exceed the protocol-defined limits. Example: 

For Y elements with protocol address range of 0000~0255, corresponding to Y0~Y377: 

① Starting address = 1, element count = 256 → Returns address error (error code 02). Only 255 Y elements 

exist starting from address 1. 

② Starting address = 0, element count = 257 → Returns data error (error code 03). The protocol defines only 

256 Y elements (exceeding the maximum count). 

③ Starting address = 0, element count = 256 → Returns valid status for all 256 elements. Ensure the requested 

elements are defined in the protocol (within the valid range). Applies to both word elements and bit elements. 

 

7.3.3 Modbus Slave Address 
(1) PLC as Modbus Slave: The correspondence between its soft elements and Modbus addresses is as follows: 

Elem

ent 
Type Physical Element Protocol Address Supported FCs Comment 

Y Bit 

Y0~Y777 

(octal) 

512 bits 

0000~0511 01, 05, 15 

Output status, with 

element addresses 

Y0–Y7, Y10–Y17, 

and so on. 

X Bit 

X0~X777 

(octal) 

512 bits 

1200~01711 01, 05, 15, 02 

Input status, with 

dual addressing 

supported. The 

element addresses 

are the same as 

above. 

M Bit 
M0~M2047 

M2048~M10239 

2000~4047 

12000~20191 
01, 05, 15  

SM Bit 
SM0~SM255 

SM256~SM1023 

4400~4655 

30000~30767 
01, 05, 15  

S Bit 
S0~S1023 

S1024~S4095 

6000~7023 

31000~34071 
01, 05, 15  

T Bit 
T0~T255 

T256~T511 

8000~8255 

11000-11255 
01, 05, 15 T element status 

C Bit 
C0~C255 

C256~C511 

9200~9455 

10000~10255 
01, 05, 15 C element status 

D Word D0~D7999 0000~7999 03, 06, 16  

SD Word 
SD0~SD255 

SD256~SD1023 

8000~8255 

12000~12767 
03, 06, 16  

Z Word Z0~Z15 8500~8515 03, 06, 16  

T Word 
T0~T255 

T256~T511 

9000~9255 

11000~11255 
03, 06, 16 

T element current 

value 

C Word C0~C199 9500~9699 03, 06, 16 
C element (INT) 

current value 

C 
Dual-

word 
C200~C255 9700~9811 03, 16 

C element (DINT) 

current value 

C 
Dual-

word 
C256~C263 10000~10101 03, 16 

C element (DINT) 

current value 

R Word R0~R32767 13000~45767 03, 06, 16  

 

Communication Diagnostic Function Codes 

The diagnostic function codes provide communication testing between the master and slave, or report internal 

error states of the slave. Supported function codes are listed below: 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 123 - 
 

Function 

Code 

Subfunction 

Code 
Subfunction Name 

 
Funcode 

Subfunction 

Code 
Subfunction Name 

08 00 Return query data 08 12 

Return bus 

communication error 

count 

08 01 

Restart 

communication 

options 

08 13 
Return bus exception 

error count 

08 04 
Force listen-only 

mode 
08 14 

Return slave message 

count 

08 10 Clear counters 08 15 
Return slave no-

response count 

08 11 
Return bus message 

count 
08 18 

Return bus character 

overrun count 

 

Error Code 

In a normal response, the slave returns data or statistic in the data field. In an error response, the slave returns 

an error code as follows: 

Error Code Description 

0x01 Illegal function code 

0x02 Illegal register address 

0x03 Illegal data 

No-response scenarios: 

⚫ Errors in broadcast frames (e.g., data/address errors). 

⚫ Character length exceeds protocol limit (e.g., RTU frames >256 bytes). 

⚫ Intercharacter timeout in RTU mode (treated as invalid frame). 

⚫ Slave in listen-only mode. 

⚫ Invalid ASCII frames (e.g., incorrect end characters, invalid character ranges). 

7.3.4 Modbus Slave Communication Configuration 
When the PLC operates as a Modbus slave, it does not initiate communication and responds to the master only 

upon receiving a locally addressed frame. The slave supports Modbus function codes 01, 02, 03, 05, 06, 08, 15, 16; 

all others (except broadcast frames) return an Illegal Function Code. 

Slave Configuration via Software 

1. Navigate to Project Manager > Communication Config, double-click COM0 to access the configuration 

interface. Set parameters such as communication protocol, station number, and baud rate, then click OK to 

save settings.  

 

 
 

7.3.5 Modbus Master Communication Configuration 
Maste Configuration via Software 

1. Navigate to Project Manager > Communication Config, double-click COM0 to access the configuration 

interface. Set parameters such as communication protocol, station number, and baud rate, then click OK to 

save settings.  



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 124 - 
 

 
 

Parameters Description 

Item Settings 

Station number 0~247 

Baud rate 115200, 57600, 38400, 19200, 9600, 4800, 2400, 1200 

Data bit 7 or 8 (7 for ASCII mode, 8 for RTU mode) 

Parity check None/Odd/Even 

Stop bit 1 or 2 (1 if parity enabled, 2 if parity disabled) 

Master/Slave mode Configure as Master or Slave 

Transmission mode RTU or ASCII 

Timeout time Time limit for master waiting for slave response 

MODRW table instruction 

interval time 

Minimum delay between sending the next instruction after completion of 

the previous one. 

Note: 

➢ When the PLC is configured as a Master, its station number must differ from slave numbers to avoid 

communication conflicts. 

➢ Configuration parameters set in the system block take effect only after a full PLC runtime cycle. 

7.3.6 MODRW Instruction Description 
1. When the PLC operates as a Modbus master, use the MODRW/Modbus instruction (provided by the system) 

to communicate with slave devices.  

 
 

2. Example program: Write value 200 to address 0 of Station 1, read data from address 0 of Station 1 and 

store it in register D18, and then write value 16#00FF to address 0 of Station 1. 

Key Features: 

⚫ MODRW can be invoked to send/receive data to/from slaves when COM0/COM1/COM2 is configured as 

the master. 

⚫ Supports up to 255 concurrent MODRW instructions. 

⚫ Instructions are executed sequentially per scan cycle. 

⚫ The instruction continuously executes as long as the enabling condition (EN) is active. 

⚫ Channel parameter: COM0=0, COM1=1, COM2=2. 

⚫ Monitor communication faults via SM/SD registers of the corresponding port. 

7.3.7Modbus Configuration Table 
When the PLC is configured as a Modbus master, communication with slaves can be managed through the 

Modbus configuration table, eliminating the need for explicit instruction calls in the program. Configuration steps: 

1. Navigate to Project Manager → Communication Config → COM0, and right-click "Add Config", as shown 

below. 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 125 - 
 

 

 
2. Double-click "MODBUS Config". In the dialog box, set parameters including slave ID, communication 

type, function code, read/write slave address, length, and remarks, as illustrated below. 

 
 

Modbus Configuration Table Description 

Item Setting Description 

Slave ID Supports 31 slaves Station ID range: 1~255. 

Communication 

Type 

Loop mode 
PLC repeatedly executes all "Loop" configurations during 

program scan. 

Trigger mode 

Triggers communication when the trigger flag is set in the 

program. Each flag set initiates one communication. Use a 

timer to periodically set the flag for desired frequency. 

Function 

Supported function codes:  

01, 02, 03, 04, 05, 06, 15, 

16. 

Write register (16): 

Uses FC06 (Data Length=1) 

or FC16 (Data Length>1). 

Write coil (15): 

Uses FC05 (Data Length=1) 

or FC16 (Data Length>1). 

Trigger Element 
M0~M10247 elements can 

be selected as trigger flags. 

In Trigger mode, communication is initiated when the flag 

(e.g., M flag) is ON. Upon successful completion, the 

system automatically clears this trigger flag, allowing the 

M flag to also serve as an indicator of successful 

communication. When configuring the communication 

table, avoid reusing the same M flag for multiple entries, as 

the system’s clearance operation may interfere with other 

communication operations. 

Slave Register 
Slave communication 

address register 
Addresses can be displayed in decimal or hexadecimal. 

Length 

Length of communication 

addresses (max. 120 INT-

type registers) 

Specifies the number of communication register addresses. 

Master Element 
Master send/receive 

addresses (supports D and R 
Specifies the address for data transmission or reception. 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 126 - 
 

elements). 

Max. Table Rows Supports up to 512 entries.  

Remark - Describes register/element addresses. 

Notes: 

Configure parameters based on refresh requirements to optimize communication performance. Avoid setting 

all entries to Loop mode, as excessive loop entries may reduce responsiveness. Use Trigger mode for non-critical 

data to improve real-time performance. For RS485 Modbus (common rate: 9600bps), limit loop entries to ≤10 and 

trigger entries to ~10 per second for optimal performance. 

 

 

7.3.8 Modbus-RTU Communication Example 
Program Requirements: 

Establish serial communication between two devices (SH311 and SH523) using the Modbus-RTU protocol. The 

master PLC reads the value of register D100 from the slave PLC. 

Slave Configuration: 

1. Navigate to Project Manager → Communication Config, double-click "COM0", select Modbus setting, and 

configure parameters such as slave mode, baud rate, and station number, as shown below. 

 
After configuration, download the project to the PLC. 

Master Configuration: 

1. Navigate to Project Manager → Communication Config, double-click "COM0", select Modbus setting, and 

configure parameters such as master mode, baud rate, and station number, as shown below. 

 
2. Right-click "COM0", select "Add Config", and then double-click "MODBUS Config". In the dialog box, 

set parameters including slave ID, communication type, function code, read/write slave address, length, 

and remarks, as shown below. 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 127 - 
 

 
 

3. After configuration, compile, download, and monitor the project.  

 
 

Program Description: The master reads the value of register D100 from the slave PLC and stores it in D3000. 

7.3.9 Slave Address Modification 
When Modbus master/slave protocol is configured for COM0/COM1/COM2, the communication station 

number can be modified via SD registers, and changes take effect immediately. 

Port Register Effective Mechanism 

COM0 SD109 Take effect immediately 

COM1 SD129 Take effect immediately 

COM2 SD149 Take effect immediately 

7.4 N:N Communication Protocol 

7.4.1 Overview 
N:N is a compact PLC network developed by Suzhou SLANVERT Electric Co., Ltd. It operates on the RS485 

physical layer, enabling direct PLC connection via Communication Port 1. PLCs in the N:N network automatically 

exchange values of D registers and M registers, allowing peer-to-peer access to network PLC registers as if accessing 

local registers.  

Key Features: Most parameters only require configuration on the #0 PLC; Online parameter modification is 

supported; Automatically detects newly added PLCs in the network; If a PLC disconnects, other PLCs continue data 

exchange uninterrupted; Communication status can be monitored via SM registers on any PLC in the network. 

7.4.2 N:N Network Data Transmission 
The N:N network employs two types of messages: token distribution from the master and data broadcasts from 

individual PLCs. 

Token Distribution: The master initially holds the token. After broadcasting data, the master sequentially passes 

the token to slaves in a cyclic manner. Only the slave holding the token can broadcast data to other PLCs (including 

the master). 

Figures 10-1 to 10-5 illustrate the primary processes of network communication. In these diagrams, Station 1# 

serves as the master. Note that by default, Station 0# is designated as the master, while Station 1# acts as a backup 

master (automatically activated if the primary master experiences communication failure or power loss). 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 128 - 
 

Master (1#)

1# Data 1# Data 1# Data

Slave (2#) Slave (3#) Slave (N#)

 
Master broadcasts 

Master (1#)

Slave (2#) Slave (3#) Slave (N#)

Token

 
Master passes the token to 2# Slave 

Master (2#)

2# Data

2# Data 2# Data

Slave (2#)

Slave (3#) Slave (N#)

 
2# Slave broadcasts 

Master (1#)

Token

Slave (2#) Slave (3#) Slave (N#)

 
Master passes the token to 3# Slave 

Master (1#)

3# Data

3# Data 3# Data

Slave (2#)

Slave (3#)

Slave (N#)

 
3# Slave broadcasts 

 

 

Master (1#)

Slave (2#) Slave (3#) Slave (N#)

 
Token passing sequence 

Figure 10-6 depicts the token-passing sequence. The solid line indicates the actual token passing path, while the 

dashed line represents the order of stations holding and broadcasting the token. Note that the token is not transferred 

directly between slaves (e.g., from 2# PLC to 3# PLC). Instead, the master issues the token to 2# PLC first, then 

subsequently to 3# PLC. 

7.4.3 N:N Network Architecture 
The N:N network supports two types of topologies: single-layer and multi-layer, as illustrated below: 

 
Single-layer Network 

 

Slave 

1# 
Slave 

2# 
Slave 

3# 
Slave 

4# 
Slave 

N# 

R
S-485 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 129 - 
 

Slave 1# Slave 2# Slave 3# Slave 4# Slave N#

Slave 1# Slave 2# Slave 3# Slave 4# Slave N#

 
Single-layer Network 

In a single-layer network, each PLC connects to the N:N network through one communication port, supporting 

a maximum of 32 PLCs per layer. In a multi-layer network, intermediate node PLCs act as inter-layer bridges, with 

their two communication ports linked to different layers. Each layer in a multi-layer configuration supports up to 16 

PLCs. 

7.4.4 N:N Refresh Mode 
PLCs in the N:N network automatically exchange values of D registers and M registers within a fixed-range 

"shared register area". Once N:N is enabled, these shared registers are continuously refreshed to ensure consistency 

across all PLCs. 

 
In "shared register area", each PLC has a writable transmit area, and N:N automatically broadcasts the content 

of this transmit area (specific D/M register values) to other PLCs. Simultaneously, each PLC receives data from other 

PLCs and stores it in a read-only receive area. 

The shared component area has a fixed capacity (64 D registers and 512 M registers available for sharing), which 

are distributed across connected PLCs. The fewer PLCs in the network, the more registers each PLC is allocated. 

This mapping relationship is defined by the N:N Refresh Mode Table. 

D Register Allocation in N:N Single-Layer Network   

D Register Allocation Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

D7700~D7701 #0 
#0 

#0 

#0 #0 

D7702~D7703 #1 

D7704~D7705 #2 
#1 

D7706~D7707 #3 

D7708~D7709 #4 
#2 

#1 D7710~D7711 #5 

D7712~D7713 #6 #3 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 130 - 
 

D Register Allocation Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

D7714~D7715 #7 

D7716~D7717 #8 
#4 

#2 

#1 

D7718~D7719 #9 

D7720~D7721 #10 
#5 

D7722~D7723 #11 

D7724~D7725 #12 
#6 

#3 
D7726~D7727 #13 

D7728~D7729 #14 
#7 

D7730~D7731 #15 

D7732~D7733 #16 
#8 

#4 

#2 

#1 

D7734~D7735 #17 

D7736~D7737 #18 
#9 

D7738~D7739 #19 

D7740~D7741 #20 
#10 

#5 
D7742~D7743 #21 

D7744~D7745 #22 
#11 

D7746~D7747 #23 

D7748~D7749 #24 
#12 

#6 

#3 

D7750~D7751 #25 

D7752~D7753 #26 
#13 

D7754~D7755 #27 

D7756~D7757 #28 
#14 

#7 
D7758~D7759 #29 

D7760~D7761 #30 
#15 

D7762~D7763 #31 

Example: 

(10) In Mode 1, Station 0# is allocated D registers D7700~D7701. The PLC at Station 0# can write values to 

D7700 and D7701, while other stations (1#~31#) can directly read values from these registers. 

(11) In Mode 2, Station 0# is allocated D registers D7700~D7703. The PLC at Station 0# can write values to 

D7700~D7703, while other stations (1#~15#) can directly read values from these registers. 

M Register Allocation in N:N Single-Layer Network 

M Register Allocation Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

M1400~M1415 #0 
#0 

#0 

#0 

#0 

M1416~M1431 #1 

M1432~M1447 #2 
#1 

M1448~M1463 #3 

M1464~M1479 #4 
#2 

#1 
M1480~M1495 #5 

M1496~M1511 #6 
#3 

M1512~M1527 #7 

M1528~M1543 #8 
#4 

#2 

#1 

M1544~M1559 #9 

M1560~M1575 #10 
#5 

M1576~M1591 #11 

M1592~M1607 #12 
#6 

#3 #0 
M1608~M1623 #13 

M1624~M1639 #14 
#7 

M1640~M1655 #15 

M1656~M1671 #16 
#8 

#4 

#2 

#1 

M1672~M1687 #17 

M1688~M1703 #18 
#9 

M1704~M1719 #19 

M1720~M1735 #20 
#10 

#5 
M1736~M1751 #21 

M1752~M1767 #22 
#11 

M1768~M1783 #23 

M1784~M1799 #24 
#12 

#6 #3 M1800~M1815 #25 

M1816~M1831 #26 #13 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 131 - 
 

M Register Allocation Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 

M1832~M1847 #27 

M1848~M1863 #28 
#14 

#7 
M1864~M1879 #29 

M1880~M1895 #30 
#15 

M1896~M1911 #31 

Note: 

(12) In Mode 1, Station 0# is allocated M registers M1400~M1415. The PLC at Station 0# can write values to 

M1400~M1415, while other stations (1#~31#) can directly read values from these registers. 

(13) In Mode 2, Station 0# is allocated M registers M1400~M1431. The PLC at Station 0# can write values to 

M1400~M1431, while other stations (1#~31#) can directly read values from these registers. 

D Register Allocation in N:N Multiple-Layer Network (Layer 0) 

D Register Allocation Mode 6 Mode 7 Mode 8 Mode 9 

D7700~D7701 #0 
#0 

#0 

#0 

D7702~D7703 #1 

D7704~D7705 #2 
#1 

D7706~D7707 #3 

D7708~D7709 #4 
#2 

#1 
D7710~D7711 #5 

D7712~D7713 #6 
#3 

D7714~D7715 #7 

D7716~D7717 #8 
#4 

#2 

#1 

D7718~D7719 #9 

D7720~D7721 #10 
#5 

D7722~D7723 #11 

D7724~D7725 #12 
#6 

#3 
D7726~D7727 #13 

D7728~D7729 #14 
#7 

D7730~D7731 #15 

Note: 

In Mode 6, Station 0# (Layer 0) is allocated D registers D7700~D7701. The PLC at Station 0# can write values 

to D7700~D7701, while other stations (1#~15#) can directly read values from these registers. 

D Register Allocation in N:N Multiple-Layer Network (Layer 1) 

D Register Allocation Mode 10 Mode 11 Mode 12 Mode 13 

D7732~D7733 #0 
#0 

#0 

#0 

D7734~D7735 #1 

D7736~D7737 #2 
#1 

D7738~D7739 #3 

D7740~D7741 #4 
#2 

#1 
D7742~D7743 #5 

D7744~D7745 #6 
#3 

D7746~D7747 #7 

D7748~D7749 #8 
#4 

#2 

#1 

D7750~D7751 #9 

D7752~D7753 #10 
#5 

D7754~D7755 #11 

D7756~D7757 #12 
#6 

#3 
D7758~D7759 #13 

D7760~D7761 #14 
#7 

D7762~D7763 #15 

Note: 

In Mode 10, Station 0# (Layer 1) is allocated D registers D7732~D7733. The PLC at Station 0# can write values 

to D7732~D7733, while other stations (1#~15#) can directly read values from these registers. 

M Register Allocation in N:N Multiple-Layer Network (Layer 0) 

M Register Allocation Mode 6 Mode 7 Mode 8 Mode 9 

M1400~M1415 #0 
#0 

#0 
#0 

M1416~M1431 #1 

M1432~M1447 #2 
#1 

M1448~M1463 #3 

M1464~M1479 #4 #2 #1 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 132 - 
 

M Register Allocation Mode 6 Mode 7 Mode 8 Mode 9 

M1480~M1495 #5 

M1496~M1511 #6 
#3 

M1512~M1527 #7 

M1528~M1543 #8 
#4 

#2 

#1 

M1544~M1559 #9 

M1560~M1575 #10 
#5 

M1576~M1591 #11 

M1592~M1607 #12 
#6 

#3 
M1608~M1623 #13 

M1624~M1639 #14 
#7 

M1640~M1655 #15 

Note: 

In Mode 6, Station 0# (Layer 0) is allocated M registers M1400~M1415. The PLC at Station 0# can write values 

to M1400~M1415, while other stations (1#~15#) can directly read values from these registers. 

M Register Allocation in N:N Multiple-Layer Network (Layer 1) 

M Register Allocation Mode 10 Mode 11 Mode 12 Mode 13 

M1656~M1671 #0 
#0 

#0 

#0 

M1672~M1687 #1 

M1688~M1703 #2 
#1 

M1704~M1719 #3 

M1720~M1735 #4 
#2 

#1 
M1736~M1751 #5 

M1752~M1767 #6 
#3 

M1768~M1783 #7 

M1784~M1799 #8 
#4 

#2 

#1 

M1800~M1815 #9 

M1816~M1831 #10 
#5 

M1832~M1847 #11 

M1848~M1863 #12 
#6 

#3 
M1864~M1879 #13 

M1880~M1895 #14 
#7 

M1896~M1911 #15 

Note: 

In Mode 10, Station 0# (Layer 1) is allocated M registers M1656~M1671. The PLC at Station 0# can write 

values to M1656~M1671, while other stations (1#~15#) can directly read values from these registers. 

CAUTION 

➢ When the N:N communication protocol is configured, D registers D7700~D7763 and M registers 

M1400~M1911 are reserved as shared resources for network data exchange. Exercise caution when using these 

registers in your program! 

7.4.5 Enhanced Refresh Modes 
The SH-series PLCs offer Modes 14~18 to support expanded shared registers, applicable only to single-layer 

networks requiring extensive data exchange. The M and D register ranges are extended to M1400~M1911 and 

D7500~D7755, respectively. 

  



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 133 - 
 

M register allocation (512 registers) is shown in the table below: 

M Register Allocation Mode 14 Mode 15 Mode 16 Mode 17 Mode 18 

M1400~M1415 #0 
#0 

#0 

#0 

#0 

M1416~M1431 #1 

M1432~M1447 #2 
#1 

M1448~M1463 #3 

M1464~M1479 #4 
#2 

#1 
M1480~M1495 #5 

M1496~M1511 #6 
#3 

M1512~M1527 #7 

M1528~M1543 #8 
#4 

#2 

#1 

M1544~M1559 #9 

M1560~M1575 #10 
#5 

M1576~M1591 #11 

M1592~M1607 #12 
#6 

#3 
M1608~M1623 #13 

M1624~M1639 #14 
#7 

M1640~M1655 #15 

M1656~M1671 #16 
#8 

#4 

#2 

#1 

M1672~M1687 #17 

M1688~M1703 #18 
#9 

M1704~M1719 #19 

M1720~M1735 #20 
#10 

#5 
M1736~M1751 #21 

M1752~M1767 #22 
#11 

M1768~M1783 #23 

M1784~M1799 #24 
#12 

#6 

#3 

M1800~M1815 #25 

M1816~M1831 #26 
#13 

M1832~M1847 #27 

M1848~M1863 #28 
#14 

#7 
M1864~M1879 #29 

M1880~M1895 #30 
#15 

M1896~M1911 #31 

  



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 134 - 
 

D register allocation (256 registers) is shown in the table below: 

D Register Allocation Mode 14 Mode 15 Mode 16 Mode 17 Mode 18 

D7500~D7507 #0 
#0 

#0 

#0 

#0 

D7508~D7515 #1 

D7516~D7523 #2 
#1 

D7524~D7531 #3 

D7532~D7539 #4 
#2 

#1 
D7540~D7547 #5 

D7548~D7555 #6 
#3 

D7556~D7563 #7 

D7564~D7571 #8 
#4 

#2 

#1 

D7572~D7579 #9 

D7580~D7587 #10 
#5 

D7588~D7595 #11 

D7596~D7603 #12 
#6 

#3 
D7604~D7611 #13 

D7612~D7619 #14 
#7 

D7620~D7627 #15 

D7628~D7635 #16 
#8 

#4 

#2 

#1 

D7636~D7643 #17 

D7644~D7651 #18 
#9 

D7652~D7659 #19 

D7660~D7667 #20 
#10 

#5 
D7668~D7675 #21 

D7676~D7683 #22 
#11 

D7684~D7691 #23 

D7692~D7699 #24 
#12 

#6 

#3 

D7700~D7707 #25 

D7708~D7715 #26 
#13 

D7716~D7723 #27 

D7724~D7731 #28 
#14 

#7 
D7732~D7739 #29 

D7740~D7747 #30 
#15 

D7748~D7755 #31 

N:N Control Strategy 

Master Determination 

Station 0 is the default master. Only Station 0 can initialize and start the network. N:N parameters (refresh mode, 

delay time, retry count, etc.) can only be configured via Station 0#. During online configuration updates or system 

block downloads on Station 0#, the backup master temporarily assumes control. After completion, Station 0# reclaims 

master status. 

Master selection rule: The lowest station number in the network acts as the master. 

Maximum Polling Station Count 

Set this value equal to the actual number of PLCs in the network, with stations numbered sequentially from 0#. 

If the set value (N) is less than the actual PLC count, stations with numbers ≥ N cannot broadcast data but can receive 

broadcasts from stations < N.  

Multi-Master-Slave (M:N) 

N:N supports multi-master-slave networks. Master here refers to PLCs that can both write their own M/D 

registers and read others', while slave refers to PLCs that can only read others' M/D registers. Within the configured 

maximum polling station count (limited by refresh mode), stations <N act as masters, while stations ≥N are slaves. 

Slaves access master registers based on the masters' refresh modes and mappings defined in the N:N Shared M/D 

Register Table. Slaves have no corresponding entries in these tables. 

7.4.6 N:N Protocol Usage Example 
Two PLCs communicating via N:N protocol in a single-layer network configured to Mode 3. 

Master Configuration 

1. Navigate to Project Manager → Communication Config, double-click COM0, and select N:N Protocol. 

Double-click the N:N setting, and set communication parameters as shown below: 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 135 - 
 

 
Parameters Description 

⚫ Station number: Assign unique sequential station numbers starting from 0. Station 0# initiates and configures 

the network. 

⚫ Maximum polling station count: Total number of PLCs in the network (up to 32). Configure this parameter, 

along with additional delay time, retry times, and mode, only on Station 0#. 

⚫ Refresh mode: 1~18 modes are available, determining the shared ranges of D and M elements. 

⚫ For a current network with 6 PLCs, set the maximum polling station count to 6 and assign station numbers 0~5. 

To allow future extension without interrupting the network (e.g., adding 2 PLCs), set the count to 8. New PLCs 

assigned station numbers 6 and 7 will be automatically detected and integrated into data exchange with stations 

0~5 within 1 second. 

Slave Configuration 

2. For stations other than Station 0#, set only their station number, ensuring baud rate and parity match Station 

0#. 

 
 

3. After configuring these parameters, compile, download, and debug the settings, as illustrated below: 

 
4. Program Description: 

Master Station 0#: Inputs data into register D7700~D7707 in transmit area, and Slave Station 1# receives from 

D7700~D7707. 

Slave Station 1#: Inputs data into register D7708~D7715 in transmit area, and Master Station 0# receives from 



Serial Communication                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 136 - 
 

D7708~D7715. 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 137 - 
 

8 Ethernet Communication 

8.1 Overview 

The SH300 and SH500 series integrate the ModbusTCP protocol (server and client), enabling seamless 

communication and data exchange with ModbusTCP-compatible devices. For devices not supporting ModbusTCP, 

socket instructions are provided to implement custom TCP/UDP-based application protocols. AutoSoft supports 

Ethernet-based monitoring, downloading, uploading, and debugging of PLCs with high efficiency. 

VH Series

 

8.2 Hardware Interface Specifications 

Item Ethernet Interface 

Transmission speed 

10Mbps: 10BASE‑T 

100Mbps: 100BASE‑TX 

10Mbps/100Mbps auto-tuning 

Modulation Baseband 

Topology Star 

Transmission medium 
Shielded twisted pair cables of Category 5 and above with aluminum foil and 

braided mesh 

Transmission distance Node-to-node distance: ≤100 m 

Connection capacity Supports up to 16 slaves and 4 masters 

8.3 IP Address Configuration/Viewing 

The SH series has a factory default IP address of "192.168.1.10". The IP address can be modified via the 

AutoSoft software when connected via USB or Ethernet. 

IP Address Viewing 

1. With a USB or Ethernet connection established, view the IP address by navigating to the menu bar -> PLC 

-> PLC Information, as shown below. 

 

SH 系列 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 138 - 
 

2. Alternatively, monitor the IP address through SD registers in the monitoring table, as illustrated below. 

 
 

IP Address Configuration 

1. In the Project Manager, double-click “EtherNet”, and configure the IP address in the pop-up window, as 

shown below. 

 
Function Description 

⚫ The default IP address for SH series communication is 192.168.1.10. After restoring the PLC to factory settings, 

this IP is retained, enabling direct communication with host computers and Modbus TCP clients. 

⚫ IP Address: A unique identifier for the device in network communication. Each device must have a distinct IP 

address. Otherwise, the device cannot connect to the network. 

⚫ Subnet Mask: Enables addressing of multiple physical networks under the same network address. The mask 

divides the subnet address and the host ID. The subnet address is derived by retaining bits in the IP address 

corresponding to "1" positions in the mask and replacing others with "0". Default subnet mask: 255.255.255.0 

(unless specified otherwise). 

⚫ Gateway Address: Routes messages to devices outside the current network. If no gateway exists, set to 0.0.0.0. 

⚫ Port 1: Reserved for Modbus TCP communication via TCP 502. Not configurable. 

⚫ Port 2: Used for AutoSoft host communication via Port 9016. Not configurable. 

⚫ Master/Slave Mode: Configures the device as a master or slave. 

8.4 Master Configuration 

The Modbus TCP Master (Modbus TCP client) supports simultaneous communication with up to 16 Modbus 

TCP Slaves (Modbus TCP servers). 

Steps: 

1. In the Project Manager area, double-click “EtherNet”, and configure the IP address and Master mode in the 

pop-up window, as shown below. 

 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 139 - 
 

 
 

2. Right-click EtherNet -> Add Config -> Double-click Ethernet Config to configure the Modbus TCP Slave’s 

IP address, as shown below. 

 
 

3. Double-click “Setting” to add communication channels for the Modbus TCP Slave and configure relevant 

parameters, as shown below. 

 
ModbusTCP Configuration Table Description 

Parameter Description 

Slave ID No setting required; reserved. 

Communication 

Type 

Loop mode: Polls slaves cyclically. 

Trigger mode: Requires a trigger condition (specified via trigger element). Accesses the 

slave when the element is ON; automatically turns OFF after completion. 

Function 
Read coils, write coils, read registers, write registers; supported function codes: 01, 02, 

03, 04, 05, 06, 15, 16. 

Trigger Element Supports M elements (M0~M10247) for trigger configuration. 

Slave Register Address of the coil/register to access (decimal or hexadecimal) 

Length 
Number of data elements to access. Example: Accessing M10~M20 requires a length of 

11. 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 140 - 
 

Master Element Address for transmitting/receiving data in the master buffer. 

4. Click OK to confirm, then compile, download, and debug the program. 

Program Example: Reads data from addresses 2000~2003 of the Slave (IP: 192.168.1.15) and stores it in 

registers D3000~D3003. 

 

Note: 

➢ To add multiple Modbus TCP slaves, repeat Steps 2~3. 

8.5 Slave Configuration 

ModbusTCP Slave 

1. In the Project Manager area, double-click “EtherNet”, and configure the IP address and Slave mode in the 

pop-up window, as shown below. 

 

8.6 ModbusTCP Function Codes 

Supported ModbusTCP function codes: 

 

Funcode Function Data Length 

0x01 (01) Read coils >=1 

0x02 (02) Read coils >=1 

0x03 (03) Read registers >=1 

0x04 (04) Read registers >=1 

0x05 (05) Write a single coil =1 

0x06 (06) Write a single register =1 

0x0F (15) Write multiple coils >1 

0x10 (16) Write multiple 

registers 

>1 

8.7 ModbusTCP Communication Address 

When SH series operates as a ModbusTCP slave, the address mapping for elements is as follows: 

Element Type Physical Element Protocol Address 
Supported 

Function Codes 
Comment 

Y Bit 

Y0~Y777 

(octal) 

512 bits 

0000~0511 01*05*15 

Output status, with 

element addresses 

Y0–Y7, Y10–Y17, 

and so on. 

X Bit 

X0~X777 

(octal) 

512 bits 

1200~01711 
01*05*15 

02 

Input status, with 

dual addressing 

supported. The 

element addresses 

are the same as 

above. 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 141 - 
 

Element Type Physical Element Protocol Address 
Supported 

Function Codes 
Comment 

M Bit 
M0~M2047 

M2048~M10239 

2000~4047 

12000-20191 
01*05*15  

SM Bit 
SM0~SM255 

SM256~SM1023 

4400~4655 

30000-30767 
01*05*15  

S Bit 
S0~S1023 

S1024~S4095 

6000-7023 

31000-34071 
01*05*15  

T Bit 
T0~T255 

T256~T511 

8000~8255 

11000-11255 
01*05*15 T element status 

C Bit 
C0~C255 

C256~C511 

9200~9455 

10000-10255 
01*05*15 C element status 

D Word D0~D7999 0000~7999 03*06*16  

SD Word 
SD0~SD255 

SD256~SD1023 

8000~8255 

12000-12767 
03*06*16  

Z Word Z0~Z15 8500~8515 03*06*16  

T Word 
T0~T255 

T256~T511 

9000~9255 

11000-11255 
03*06*16 

T element current 

value 

C Word C0~C199 9500~9699 03*06*16 
C element (INT) 

current value 

C 
Dual-

word 
C200~C255 9700~9811 03, 16 

C element (DINT) 

current value 

C 
Dual-

word 
C256~C263 10000-10101 03, 16 

C element (DINT) 

current value 

R Word R0~R32767 13000-45767 03*06*16  

 

● Query quantity of coils/discrete inputs/registers 

 

Funcode Name Max. Qty 

0x01 (01) Read coils 1920 

0x02 (02) Read discrete inputs 255 

0x03 (03) Read registers 120 

0x04 (04) Read inputs registers 255 

0x05 (05) Single coil 1 

0x06 (06) Single register 1 

0x0f (15) Write multiple coils 1920 

0x10 (16) Write multiple registers 120 

 

8.8 Device Name Modification 

When multiple PLCs are connected within a LAN, assigning unique names helps distinguish devices efficiently. 

1. Navigate to the menu bar: PLC > PLC Name Setting, as shown below. 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 142 - 
 

 
2. Navigate to Tool> PLC Communication> Connect, select “Ethernet” and click “Search” to search in local 

area network. Double-click the target device to establish communication with the host software, as shown 

in the figure below: 

 

 

8.9 Ethernet-related SD Registers 

 When using Ethernet connection, users can monitor or modify IP addresses through SD special registers. 

Address Function Property Description 

SD470 IP Address 0 R/W IP Address 0 

SD471 IP Address 1 R/W IP Address 1 

SD472 IP Address 2 R/W IP Address 2 

SD473 IP Address 3 R/W IP Address 3 

SD474 Ethernet Slave Listening Port 502 R Port 502 

SD475 MAC Address 0 R MAC Address 0 

SD476 MAC Address 1 R MAC Address 1 

SD477 MAC Address 2 R MAC Address 2 

SD478 MAC Address 3 R MAC Address 3 

SD479 MAC Address 4 R MAC Address 4 

SD480 MAC Address 5 R MAC Address 5 

SD481 
Slave IP3 Address Number for 

Communication Errors 
R 

Indicates network 

communication errors 

SM470 IP Address Modification Enable R/W 

Set SM470 to ON after 

modifying IP addresses to 

activate new IP 

immediately. 

  



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 143 - 
 

8.10 Ethernet Free Port Protocol 

8.10.1 Overview 
TCP Free Port (Socket) communication is a two-way method where both parties must implement programs: one 

acts as the active party to send data, and the other as the passive party to receive data. Hosts on the network transmit 

data through interfaces provided by sockets. The SH series offers Ethernet socket interfaces. By utilizing sockets, 

users can conveniently achieve communication between different devices over a TCP/IP network. 

8.10.2 Transmission Control Protocol 
Transmission Control Protocol (TCP) is a connection-oriented, reliable, byte-stream-based transport layer 

communication protocol. The Internet differs significantly from individual networks, as its various segments may 

have distinct topologies, bandwidths, latencies, packet sizes, and other parameters. TCP is designed to dynamically 

adapt to these characteristics of the Internet and maintain robustness against diverse failures. 

The SH series provides a connection-oriented socket TCP communication interface, with the workflow 

illustrated in the figure below. 

 

Server Client

  



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 144 - 
 

8.10.3 Free Port Protocol High/Low Byte 
The data transmission and reception formats can be controlled via SM special registers, effective only for 

Ethernet Free Port Protocol instructions. 

Mode 

Configuration 
SM Special Register 

High/Low Byte 

Validity 

SM471=OFF: Both high and low bytes are valid. 

Example: Sending data 16#1234 will transmit both high byte (16#12) and low 

byte (16#34). 

 

SM471=ON: Only the low byte is valid. 

Example: Sending data 16#1234 will transmit only the low byte (16#34), omitting 

the high byte (16#12). 

 

 

8.10.4 Freeport Protocol Instruction List 
 

Instruction Name Function 

TCP_Listen Establish listening state (server-side) 

TCP_Accept Establish connection (server-side) 

TCP_Connect Establish connection (client-side) 

TCP_Close Close Ethernet connection 

TCP_Send Send data via Ethernet 

TCP_Recive Receive data via Ethernet 

 

8.11 Freeport Protocol Instruction Descriptions 

8.11.1 TCP_Listen Instruction (Establish Listening State - Server) 
 

 
 

 

I/O Name Data Type 
Applicable (Soft 

Element) 
Range Description 

IN Enable BOOL M/S TRUE, FALSE Enabled 

IN Socket WORD Constant/D/R/W 0~4095 User-defined socket 

IN Port WORD Constant/D/R/W 0x0~0xffff Local port number 

OUT Active BOOL M/S TRUE, FALSE Active flag 

OUT Busy BOOL M/S TRUE, FALSE Executing flag 

OUT Error BOOL M/S TRUE, FALSE Error flag 

OUT ErrorID WORD D/R/W 0x0~0xffff Error ID 

Function and Instruction Description 

⚫ The server must wait for connection requests from clients. The TCP_Listen instruction is used to listen on 

a specified local port for client requests. Once a connection request is received, the TCP_Accept instruction 

must be used to establish communication with the client. 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 145 - 
 

 
 

8.11.2 TCP_Accept Instruction (Establish Connection - Server) 
The TCP_Accept instruction accepts connection requests. When a server in listening state receives a client's 

connection request, it places the request into a waiting queue. When operating as a server, use the TCP_Accept 

instruction to accept client connection requests. 

 

 

I/O Name Data Type 
Applicable 

(Soft Element) 
Range Description 

INT Enable BOOL M/S TRUE, FALSE Enabled 

IN ListeningSocket WORD 
Constant/D/R/

W 
0~4095 User-defined socket 

OUT Connected BOOL M/S TRUE, FALSE 
Connection 

established flag 

OUT Busy BOOL M/S TRUE, FALSE Executing flag 

OUT ConnetedSocket WORD D/R/W 4096~65535 Connected socket 

OUT IPAddress DWORD D/R/W - 
Remote host IP 

address 

OUT Port WORD D/R/W - Remote host port 

OUT Error BOOL M/S TRUE, FALSE Error flag 

OUT ErrorID WORD D/R/W 0x0~0xffff Error ID 

Function and Instruction Description 

⚫ A server in listening state must use the TCP_Accept instruction to establish communication with a client after 

receiving its connection request. After successful communication establishment, data transmission or reception 

can be performed via TCP_Send or TCP_Receive. 

⚫ Multiple TCP_Accept instructions enable the same local port to establish communication connections with 

multiple clients. 

⚫ The maximum total number of simultaneous connections supported between clients and the server is four. 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 146 - 
 

 
 

8.11.3 TCP_Connect Instruction (Establish Connection - Client) 
For a client to communicate with a server, it must send a connection request to the server. When operating as a 

client, use the TCP_Connect instruction to initiate connection requests. 

 

 
 

I/O Name Data Type 
Applicable (Soft 

Element) 
Range Description 

IN Enable BOOL M/S TRUE, FALSE Enabled 

IN Socket WORD Constant/D/R/W 0~4095 User-defined socket 

IN IPAddress DWORD IP address - Target server IP 

address 

IN Port WORD Constant/D/R/W 0x0~0xffff Target server port 

number 

IN ReConnect BOOL M/S TRUE, FALSE Auto-reconnect 

when ON 

OUT Connected BOOL M/S TRUE, FALSE Connection status 

with the server 

OUT Busy BOOL M/S TRUE, FALSE Executing flag 

OUT Error BOOL M/S TRUE, FALSE Error flag 

OUT ErrorID WORD D/R/W 0x0~0xffff Error ID 

 

Function and Instruction Description 

⚫ When operating as a client, use the TCP_Connect instruction to connect to a specified server port for 

communication. After the server accepts the connection, data transmission or reception can be performed via 

TCP_Send or TCP_Receive. 

⚫ After initiating a connection request via TCP_Connect, the client waits up to 127 seconds. If the server does not 

respond, the connection fails. 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 147 - 
 

 
 

8.11.4 TCP_Close Instruction (Close Ethernet Connection) 
The TCP_Close instruction is used to close connections or terminate listening after communication completion. 

 

 
 

 

I/O Name Data Type 
Applicable (Soft 

Element) 
Range Description 

IN Execute BOOL M/S TRUE, FALSE Rising edge trigger 

IN Socket WORD Constant/D/R/W - User-defined socket 

OUT Done BOOL M/S TRUE, FALSE Execution completed 

OUT Busy BOOL M/S TRUE, FALSE Executing flag 

OUT Error BOOL M/S TRUE, FALSE Error flag 

OUT ErrorID WORD D/R/W 0x0~0xffff Error ID 

 

Function and Instruction Description 

⚫ After completing communication, use the TCP_Close instruction to close connections, stop listening, or 

terminate active sockets. 

⚫ The TCP_Send instruction transmits data to a remote host after a successful connection is established between 

the server and client. 

 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 148 - 
 

 
 

8.11.5 TCP_Send Instruction (Ethernet Data Transmission) 
The TCP_Send instruction transmits data to a remote host after a successful connection is established between 

the server and client. 

 

 
 

 

I/O Name Data Type 
Applicable (Soft 

Element) 
Range Description 

IN Enable BOOL M/S TRUE, FALSE Enabled 

IN Socket WORD Constant/D/R/W 0~65535 User-defined socket 

IN Buffer WORD Constant/D/R/W Software address 
Start address for 

sending data 

IN Sizenote WORD Constant/D/R/W 0~256 

Data length and byte 

order configuration 

(low/high byte). 

OUT Done BOOL M/S TRUE, FALSE 
Transmission 

completion flag 

OUT Busy BOOL M/S TRUE, FALSE 
Transmission in 

progress flag 

OUT Error BOOL M/S TRUE, FALSE Error flag 

OUT ErrorID WORD D/R/W 0x0~0xffff Error ID 

Note: 

The Size parameter has two functions: 

1. Low byte (bits 0~7): Specifies the data length to be sent. 

2. Highest bit of high byte (bit 15): Controls the byte order (high/low). 

Example: When using TCP_Send to transmit Buffer data 16#1234 with a length of 10 bytes: 

If Size = 16#000A, the sent data is 16#1234. 

If Size = 16#800A, the sent data is 16#3412. 

 

Function and Instruction Description 

⚫ After a successful connection is established between the server and client, the TCP_Send instruction 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 149 - 
 

transmits data from the buffer to the remote host with the specified length. The Size parameter must be less 

than or equal to the actual size of the data buffer (Buffer parameter); otherwise, there is a risk of out-of-

bounds data access. 

 

 

8.11.6 TCP_Receive Instruction (Ethernet Data Reception) 
The TCP_Receive instruction retrieves message data sent from a remote host via a specified socket after a 

successful connection is established between the server and client. 

 

 
 

I/O Name Data Type 
Applicable 

(Soft Element) 
Range Description 

IN Enable BOOL M/S TRUE, FALSE Enabled 

IN Socket WORD 
Constant/D/R/

W 
0~65535 User-defined socket 

IN Buffer WORD 
Constant/D/R/

W 
Software address 

Start address for receiving 

data 

IN Sizenote WORD 
Constant/D/R/

W 
0~256 

Buffer length and byte order 

configuration 

OUT Done BOOL M/S TRUE, FALSE Reception completion flag 

OUT Busy BOOL M/S TRUE, FALSE Reception in progress flag 

OUT RxSize WORD D/R/W 0~256 Received data length 

OUT Error BOOL M/S TRUE, FALSE Error flag 

OUT ErrorID WORD D/R/W 0x0~0xffff Error ID 

Note: 

The Size parameter has two functions: 

1. Low byte (bits 0~7): Sets the receive data length. 

2. Highest bit of high byte (bit 15): Configures the byte order (high/low). 

Example: When receiving data 16#1234 with a length of 10 bytes: 

If Size = 16#000A, the received data is 16#1234. 

If Size = 16#800A, the received data is 16#3412. 

 

Function and Instruction Description 

⚫ When the Size parameter is set to 0, data is transmitted in string format, i.e., sending data from the buffer (Buffer 

parameter) starting at the first byte up to (but excluding) the terminator (ASCII code 0). 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 150 - 
 

⚫ The Size parameter must be less than or equal to the actual size of the data buffer (Buffer parameter); otherwise, 

there is a risk of out-of-bounds data access. After a successful connection is established between the server and 

client, message data sent from the remote host is stored in the socket buffer. Use the TCP_Receive instruction 

to retrieve received message data from the specified socket buffer. 

 

8.12 TCP Server Communication Example 

SH311 operates as a TCP server using the TCP_Listen instruction for listening, with Port=100 (configurable 0-

4095). After accepting client connections, it can receive data from clients and send data back. 

Software Configuration: 

SH523: IP 192.168.1.12 (Client) 

SH311: IP 192.168.1.10 (Server) 

TCP Server Function Implementation: 

1. The server receives data 16#7B sent from the client and stores it in register D1000. as shown in the figure 

below: 

 
 

Note: 

➢ When the PLC acts as a server, the TCP_Listen instruction automatically generates a socket ID upon successful 

connection. The Socket parameter for both server-side receive and send instructions must be identical; otherwise, 

error code 1809 will occur. 

➢ IPAddress parameter configuration in TCP_Connect: For example, the server IP address 192.168.1.10 

corresponds to 16#C0A8010A. 

8.13 TCP Client Communication Example 

SH523 operates as a TCP client with Port=100, sends a connection request to the server at 192.168.1.10, and 

transmits 20 bytes after establishing the connection. 

Software Configuration: 

SH523: IP 192.168.1.12 (Client) 

SH311: IP 192.168.1.10 (Server) 

TCP Server Function Implementation: 

1. The client sends data 16#7B, which the server receives and stores in register D1000. 

 



Ethernet Communication                                                                  SH100/300/SH500 PLC Programming and Application Manual  

- 151 - 
 

 

8.14 TCP Freeport Error Codes 

When using the Ethernet freeport protocol, incorrect instruction parameters will trigger the following errors: 

Error Code Description 

1800 Socket ID error 

1801 Socket port error 

1802 Socket port or ID already exists 

1803 Failed to create Socket listener 

1804 Failed to bind Socket port 

1805 Max. number of socket ports exceeded 

1806 Socket pointer error 

1807 Socket listener port already closed 

1808 Socket connection port already closed 

1809 Socket closed 

1810 Socket data reception error 

1811 Data sent via unconnected Socket 

1812 Multiple consecutive Socket data transmission errors 

1813 Socket data size exceeds limit 

1814 Host disconnected 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 152 - 
 

9 CAN Communication 

9.1 Overview 

The SH series (SH311/SH522/SH523/SH524) features a built-in CAN communication interface that supports 

the CANopen communication protocol. Using CANopen, the system supports the extension of up to 31 slaves (with 

16 recommended). 

 

9.2 Hardware interface 

The CANopen hardware interfaces are described in the table below: 

 

Terminal Interface Terminal A (Left 

Side) 

Terminal B (Right Side) 

 

RS-485+ RS-485- 

CAN (H) CAN (L) 

 GND 

+24V 0V 

 

Termination Resistor DIP Switch 

The termination resistor DIP switch is located below the left extension interface. ON indicates the termination 

resistor is connected (defaulted). The switch diagram is as follows: Switch 1 for RS485 communication, and switch 

2 for CAN communication. 

 
 

9.3 CAN Communication Networking 

When configuring a CAN network, all three wires (CAN_H, CAN_L, and GND) of each device must be 

connected in a one-to-one correspondence. Both ends of the bus must be terminated with a 120Ω CAN bus 

termination resistors. The SH master has a built-in resistor, which can be enabled/disabled via the DIP switch, 

defaulting to ON. 

The CAN wiring diagram for a multi-device network is as follows: 

CAN Bus

120Ω 

terminal  

resistor

DIP switch

Slave 1

Slave N

DIP switch

VH master

Set to ON via communication 

matching resistor DIP switch 

 
 

 

Note: 

➢ The GND of all devices must be connected together. 

 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 153 - 
 

9.3.1 Relationship Between Distance and Baud Rate 
The relationship between supported baud rates and communication distances for CAN communication is shown 

in the table below: 

 

Baud Rate (kbit/s) Distance (m) Min Wire Diameter (mm²) Max Nodes 

1000 20 0.3 18 

500 80 0.3 31 

250 150 0.3 31 

125 300 0.5 31 

100 500 0.5 31 

50 1000 0.7 31 

  



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 154 - 
 

9.4 CANopen Protocol 

The SH series supports the CANopen communication standard DS301. 

Software Function Master Slave 

Supported Protocol DS301V4.02 DS301V4.02 

Max TPDO 64 4 

Max RPTO 64 4 

Slave Nodes 30 / 

Data exchange elements D0~D7999 (configurable) SD400~SD415 (receive area) 

SD432~SD447 (transmit area) 

9.4.1 CANopen Indicators 
During CANopen communication, the operation status can be determined via the CANopen indicators, as shown 

in the table below: 

LED State CAN (Green) ERR (Red) 

OFF Unconfigured No error 

ON Operation status System error 

Flash Communication error CAN communication error or system error 

9.4.2 CANopen Terms 
⚫ NMT (Network Management): Manages application layers, network states, and node ID allocation, and operates 

in a master-slave mode: only one NMT master and multiple slaves are allowed in a CAN network. It is primarily 

used to control slave states. 

⚫ SDO (Service Data Object): Accesses data in a slave device's object dictionary via index and sub-index, mainly 

used for slave configuration. Each SDO frame requires an acknowledgment reply. 

⚫ PDO (Process Data Object): Transmits real-time data, limited to 1 to 8 bytes. PDO transmission includes 

synchronous and asynchronous modes. PDO frames are the primary data exchange frames after slave 

initialization. 

⚫ SYNC (Synchronous Service): Uses master-slave mode. The SYNC master periodically sends SYNC objects, 

and SYNC slaves synchronize task execution upon receipt. It is primarily used for synchronous PDO 

transmission. 

⚫ COB-ID (Communication Object Identifier): Each CANopen frame starts with a COB-ID, which acts as the 

communication object identifier in the CAN frame. The COB-ID is not equal to the slave ID but is typically 

initialized by default to correlate with the slave ID. 

 

9.5 CANopen Configuration 

9.5.1 Master Configuration 
1. Open AutoSoft software, double-click "CAN" under the Communication Config, select "Master" as the 

protocol type, set the Station Number and Baud Rate as required, and click "OK". The CAN interface is 

then configured as a CANopen master. 

 
2. Right-click CAN -> Add Config. After adding, double-click CANopen Config, as shown below. 

 

 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 155 - 
 

 
3. Add CANopen slaves by double-clicking or dragging them in the CANopen Device List, as shown below. 

 

 
4. If a slave is not listed, right-click on CANopen Device List, select Add EDS (EDS files can be obtained 

from the device supplier), or manually copy the EDS file to Installation Path > Config Folder and restart 

the software. 

 

 
 

 

 

Master Configuration 

1. Set master parameters by double-clicking the SH master in the network. The following window will appear: 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 156 - 
 

 
Master Parameters Description 

Item Description 

Master Node 

ID 

Set the master node ID. When this ID matches the PLC’s own station number, the PLC is 

initialized as a CANopen master. 

Baud Rate Effective communication baud rate for the master. 

Prohibit SDO 

and NMT 

access during 

program 

execution 

When enabled, online debugging functions are disabled during program execution. This 

restriction applies only to background software. 

Ignore error 

and continue to 

configure all 

SDO 

When enabled, configuration proceeds even if errors occur (except validation errors). This 

applies to all slaves. If disabled, the master broadcasts a reset to slaves upon SDO errors. 

Enable sync 

production 

When enabled, the master sends Sync frames cyclically at the interval set in Sync Cycle 

(ms). 

(Note: Only one Sync frame transmitter is allowed in the network.) 

COB-ID 
Sync frame COB-ID. Default: 0x80 (non-configurable). Sync Cycle (ms): SYNC frame 

transmission interval. Default: 200 ms. Window Length (ms): Default: 0 (non-configurable). 

Enable 

heartbeat 

production 

When enabled, the master sends heartbeat frames cyclically at the interval set in Production 

Time (ms). Production Time (ms): Heartbeat transmission interval. Default: 300 ms. 

(Note: The master’s default heartbeat consumption time is 2.5× the heartbeat production 

time.) 

SDO Timeout 

Period 

SDO response wait time. Default: 500 ms. SDO frames are primarily used for network 

configuration. If no response is received after 3 retries, the master declares a timeout. This 

value defines the wait interval per frame. 

Start address of 

monitoring 

register 

The online status of nodes will be updated to the designated register (default: D7800 

(configurable)). 

Value Status 

0 Initialization 

4 Stop 

5 Operation 

127 Pre-run 

255 Offline 
 

 

Master Node List Configuration 

1. Node configuration is primarily used to map slave receive and transmit addresses, as shown below. 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 157 - 
 

 
 

Description 

⚫ Automatically allocate PDO mapping register: When enabled, register addresses for master-slave data exchange 

are automatically assigned; when disabled, manually set the start address for each PDO (default: enabled). 

⚫ Start address of receive mapping register: Auto-assigned start address for data transmitted by the master 

(meaningful only when “Automatically allocate PDO mapping register” is enabled). 

⚫ Slave address of send mapping register: Auto-assigned start address for data received by the master (meaningful 

only when “Automatically allocate PDO mapping register” is enabled). 

 

Network Status 

Start Monitoring/Stop Monitoring: Click to start/stop monitoring information on this page.  

 
Parameter Descriptions: 

⚫ Network Load: Monitors network load in real time. 

⚫ Network Status: Displays the operation status of current network nodes. Monitoring is meaningful only for the 

master. Status values are sourced from the node status monitoring register. 

⚫ Emergency Error Message: Displays emergency error messages in the network. Monitoring is meaningful only 

for the master. The PLC master caches only the latest error message. Up to 5 messages are cached if the 

background remains open. 

⚫ SDO Configuration Node Number: Node ID with SDO configuration errors. 

⚫ Error Step: ID of the SDO error. Refer to the "Service Data Object" tab of the corresponding slave for details. 

⚫ Error Code: SDO error codes. (CANopen standard error codes). 

9.5.2 Slave Configuration 
This section describes the CANopen slave configuration process and parameters using the SD710 slave as an 

example. 

(1) Slave Node Configuration 

1. Drag the slave into the configuration and double-click the slave in the network to open the dialog box, as 

shown below: 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 158 - 
 

 
 

 
(2) Parameter Description 

Item Description 

Slave Node ID Node ID of the slave to be configured. 

Ignore error and continue 

to configure SDO 

Enabled: Configuration continues on errors (except validation errors). 

Disabled: Configuration halts on errors, and the master stops the entire network if 

it is running. 

This function is disabled by default. 

Create all SDO When enabled, all writable object dictionary entries in the EDS are added and 

initialized during configuration. This function is disabled by default. 

Not initialized When enabled, the slave skips initialization (selectable only when using default 

configurations). This function is disabled by default. 

Factory Setting When enabled, additional operations can be selected. 

(Default: disabled; this option requires support from the selected slave device). 

  



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 159 - 
 

(3) Error Control Setting 

Item Description 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Error Control 

Node Protection When enabled, node protection is activated for the slave (default: 

disabled). 

Node protection timeout = protection time × lifecycle factor. 

Node protection is a mutual monitoring mechanism between master 

and slave via acknowledgment frames. Heartbeat and node 

protection are mutually exclusive. 

Protection time (ms): Node protection interval, defaulted to 200 ms. 

Lifecycle factor: Node protection factor, defaulted to 3. 

Heartbeat Production When enabled, the slave generates heartbeat frames (default: 

enabled).  The master monitors the slave’s heartbeat status by 

default. 

Heartbeat Production Time (ms): Heartbeat transmission interval. 

Heartbeat Attribute: Configures the slave to monitor heartbeats from 

other nodes (default: disabled; requires slave support for heartbeat 

monitoring). 

Synchronize Objects When enabled, the slave sends Sync frames cyclically at the interval 

set in Sync Cycle (ms). 

COB-ID: Sync frame COB-ID, defaulted to 0x80 (non-

configurable). 

Sync Cycle (ms): Sync frame transmission interval, defaulted to 200 

ms. 

Window Length (ms): Default: 0 (non-configurable). 

Note: Only one Sync frame transmitter is allowed in the network. 

Emergency Message When enabled, the emergency message COB-ID is configured 

during configuration (default: disabled). 

Check When Restart Vendor ID Check, Product ID Check, Version Check: When 

enabled, the corresponding validations are performed before slave 

configuration begins. If validation fails, the network cannot start. 

 

9.5.3 PDO Mapping Configuration 
Receive PDO (RPDO): Data transmitted from the master to the slave. 

Transmit PDO (TPDO): Data transmitted from the slave to the master. 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 160 - 
 

 
 

 

(1) PDO Enable 

Enable PDO: Check the checkbox to enable the PDO. Default-enabled PDOs from the slave’s EDS file are pre-

checked. 

(2) PDO Mapping Edit 

Click “Add”, select the desired PDO mapping, and click “OK”, as shown below. 

 
To delete a PDO mapping, check the target PDO and click “Delete”. 

9.5.4 PDO Property 
Double-click a PDO to access its property settings, as shown below: 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 161 - 
 

 
(1) COB-ID 

The ID used for PDO transmission. According to CANopen DS301, the first four PDOs have default COB-ID 

initial values; others require manual configuration (if supported by the slave). Configuration rules: No duplicate 

COB-IDs are allowed in the network, with valid range of 0x180~0x57F. 

Transmission Type Transmission Trigger Activation Condition 

Loop-Sync (Type 0) Data changes + a Sync frame received Activated after receiving a Sync 

frame. 

Loop-Sync (Type 1~240) After specified Sync counter reached Activated after receiving a Sync 

frame. 

Async-RTR only (Type 252) N/A N/A 

Async-RTR only (Type 253) N/A N/A 

Async-vendor specific (Type 254) Vendor-defined Vendor-defined 

Async-device profile specify 

(Type 255) 

Async-device profile specify (Type 255) Immediately effective 

Note: 

➢ When using synchronous transmission types, ensure sync production is enabled on a node (typically the master). 

⚫ Sync Counter 

Valid when Loop-Sync (Type 1~240) is selected. Set the Sync counter value. 

⚫ Inhibit Time (100μs) 

Configurable for Async-device profile specify (Type 255). 0: Disabled; Non-zero: Minimum interval 

between frame transmissions. 

⚫ Event Time (ms) 

Configurable for Async-device profile specify (Type 255). 0: Disabled; Non-zero: Periodic transmission 

interval, subject to the inhibit time. 

Example: The figure below illustrates settings for Loop-Sync (Type 1~240). 

Sync number 2 Take effect at next Sync PDO
Take effect upon async PDO 

receipt

Sync frame Sync PDO Async PDO

 
 

9.5.5 Service Data Objects (SDO) 
1. Click “Service Data Objects” to access the SDO interface. This interface displays SDO configuration data 

automatically generated based on user settings. 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 162 - 
 

 
2. Click “Add” to create a user-defined configuration, primarily used to assign initial values to the slave’s 

object dictionary. 

Edit: Modify user-defined configurations. 

Delete: Remove user-defined configurations. 

9.5.6 Online Debugging 
1. Click “CANopen Debug” to access the debugging interface, as shown below: 

 

 
 

CANopen Debugging 

Item Description 

 

 

NMT Command 

Start Node Sends a Start Node command to the slave. 

Stop Node Sends a Stop Node command to the slave. 

Pre-run Sends a Pre-run command to the slave. 

Reset Node Sends a Reset Node command to the slave. 

Reset 

Communication 

Sends a Reset Communication command to the slave. 

 

Service Data Objects 

(SDO) 

Index & Sub-index Selectable only from the object dictionary entries provided 

in the slave’s EDS. 

Value Data to send or received data. 

Bit Length Automatically generated based on the object dictionary in 

the EDS (non-editable). 

Result Error information. 

Read SDO/Write Executes read/write operations on the object dictionary. 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 163 - 
 

SDO 

 

 

Diagnostic Information 

Online Status Current slave state (based on heartbeat or node protection 

feedback). 

SDO Error Step Step number of SDO errors encountered during 

configuration (corresponds to entries in the SDO tab). 

Diagnostic String Current error message (SDO error). 

Emergency Error 

Messages 

Displays emergency error frames in the network (real-time 

monitoring; up to 5 cached in background, but PLC retains 

only the latest error). 

 

Note: 

➢ If “Prohibit SDO and NMT access during program execution” is enabled in the master, this feature becomes 

unavailable. 

9.6 CANopen Troubleshooting 

9.6.1 Troubleshooting Methods 
(I) Check Termination Resistors 

Power off all devices. Use a multimeter to measure the resistance between CAN_H and CAN_L at either end of 

the network. The value should be approximately 60 Ω. Too low value indicates multiple termination resistors are 

incorrectly connected beyond the two ends. Locate and remove the extra resistors. 120 Ω value indicates that only 

one termination resistor is connected, leading to poor communication quality. No termination resistors will lead to 

communication fails. Ensure termination resistors are enabled at the first and last nodes in the network. 

(II) Check Baud Rate 

Verify that all nodes in the network are configured with the same baud rate. Baud rate settings take effect only 

after power cycling or restarting the devices. 

Refer to 9.3.1 Relationship Between Distance and Baud Rate for compatibility guidelines. 

(III) Check Wiring 

Connect the GND terminals of all CAN devices to ensure a common ground reference. 

Inspect for short circuits between communication lines, shielded cables, and power supplies. 

(IV) Other Considerations 

If severe environmental interference persists, attempt to reduce the baud rate to improve communication stability. 

9.6.2 EMCY Error Code 
Table 9-1 (Hexadecimal) 

EMCY Error Code Description EMCY Error 

Code 

Description 

00xx No error 50xx Device hardware 

10xx General error 60xx Device software 

20xx Current 61xx Internal software 

21xx Device input current 62xx User software 

22xx Device internal current 63xx Data settings 

23xx Device output current 70xx Additional modules 

30xx Voltage 80xx Monitoring 

31xx Power supply voltage 81xx Communication 

32xx Device internal voltage 82xx Protocol error 

33xx Output voltage 90** External error 

40xx Temperature F0** Additional functions 

41xx Ambient temperature FF** Device-specific 

42xx Device temperature   

Table 9-2 (Hexadecimal) 

EMCY Error Code Description EMCY Error Code Description 

0000 Error reset or no error 6300 Data settings 

1000 General error 7000 Additional module error 

2000 Current error 8000 Monitoring error 

2100 Device input current 8100 General communication error 

2200 Device internal 

current 

8110 CAN communication overload 

2300 Device output current 8120 CAN passive mode error 

3000 Voltage error 8130 Node protection or heartbeat 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 164 - 
 

error 

3100 Power supply voltage 8140 Bus-off recovery 

3200 Device internal 

voltage 

8150 CAN-ID collision 

3300 Output voltage 8200 Protocol error 

4000 Temperature error 8210 PDO length error 

4100 Ambient temperature 8220 Oversize PDO length 

4200 Device temperature 8240 Unrecognized SYNC data 

length 

5000 Device hardware error 8250 RPDO timeout 

6000 Device software error 9000 External error 

6100 Internal software F000 Additional function error 

6200 User software FF00 Device-specific error 

 

9.7 CANopen Axis Control Instructions 

9.7.1 Axis Control Instructions List 
The CANopen axis control module includes two instruction sets: CANopen Integer Axis Control Instructions 

and CANopen Floating-Point Axis Control Instructions. The integer instructions do not support the [Axis Parameter 

Setting] function, and homing modes or torque functions require manual SDO parameter configuration. 

Instructions Description Effective 

MCPOWER Communication-controlled drive enable / 

MCRESET Communication-controlled drive reset / 

MCSTOP Communication-controlled drive stop / 

MCHALT Communication-controlled drive halt / 

MCRDPOS Communication-read actual position  

 

 

No 

 

MCRDVEL Communication-read actual velocity 

MCRDPAR Communication-read drive parameter 

MCWRPAR Communication-write drive parameter 

MCHOME Communication-controlled drive homing 

MCMOVABS 
Communication-controlled absolute 

positioning 

MCMOVREL 
Communication-controlled relative 

positioning 

MCMOVVEL Communication-controlled velocity mode 

MCJOG 
Communication-controlled jogging (velocity 

mode) 

MCRDPOS_R Communication-read actual position  

 

Yes 

Note: When using CANopen Floating-

Point Axis Control Instructions, the 

drive must support uint unit 

conversion. 

 

MCRDVEL_R Communication-read actual velocity 

MCRDPAR_R Communication-read drive parameter 

MCWRPAR_R Communication-write drive parameter 

MCHOME_R Communication-controlled drive homing 

MCMOVABS_R 
Communication-controlled absolute 

positioning 

MCMOVREL_R 
Communication-controlled relative 

positioning 

MCMOVVEL_R Communication-controlled velocity mode 

MCJOG_R 
Communication-controlled jogging (velocity 

mode) 

9.7.2 Axis Control Command State Machine 
Axis State Machine 

Each servo actuator is treated as a motion control axis. Axis control follows the state machine below. 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 165 - 
 

Discrete 

Motion

Continuous 

Motion

Stopping Error Stop

Homing Standstill Disable

  
 

Axis State Descriptions 

 

State Description 

Disable 

Initial state after power-up. 

Motion commands are invalid, and the servo actuator is disabled. 

Transition ⑤: Upon valid MCPOWER command, master sends 0x06, 0x07, 0x0F to 

servo object dictionary (0x6040). Upon completion, servo enters enabled state. 

Transition ②: For non-fault states, invalid MCPOWER command triggers master to 

send 0x00 to 0x6040. Transition completes when servo feedback (0x6041) confirms 

non-operational state. 

Transition ③: In fault state, MCRESET triggers master to send 0x80 to 0x6040. 

Transition completes when servo feedback confirms fault reset and disabled state. 

Error Stop 

Highest priority. 

Transition ①: Activated when a fault occurs in the axis or servo (402 state machine 

transitions to fault state) in any state. 

Some faults do not halt the servo. 

Standstill 

Servo actuator is enabled and fault-free. 

No active commands. 

Transition ④: Executed when MCRESET is applied in fault state while servo remains 

enabled. 

Transition ⑥: Activated upon completion of MCSTOP (busy flag cleared). 

Stopping Executing a stop command with configured deceleration. 

Discrete Motion 

Executing MCMOVABS or MCMOVREL. 

Master sends 0x0F and 0x1F to 0x6040. 

The servo operates in PP control mode. 

Continuous Motion 

Executing MCMOVVEL or MCJOG. 

Master sends 0x0F and 0x1F to 0x6040. 

The servo operates in PV control mode. 

Homing 

Executing MCHOME. 

Master sends 0x0F and 0x1F to 0x6040. 

The servo operates in HM control mode. 

 

9.7.3 Error Code Descriptions 
Code Description 

0 No error  

1 
Axis number error. 

Axis number does not exist in CANopen configuration or PDO configuration error. 

2 Instruction parameter error. 



CAN Communication                                    SH100/300/SH500 PLC Programming and Application Manual  

- 166 - 
 

Acceleration/deceleration ≤ 0 for MCMOVABS, MCMOVREL, MCMOVVEL, MCJOG; 

velocity ≤ 0 for MCMOVABS, MCMOVREL. 

3 Parameter (position, home offset) value out of range. ※1  

4 Parameter (velocity) value out of range. ※2  

5 Parameter (acceleration) value out of range. ※2  

6 
Parameter (deceleration) value out of 

range. ※2  
 

8 Instruction interrupted by another instruction, enable loss, or disconnection during execution. 

9 Forward overtravel caused instruction termination. ※3  

10 Reverse overtravel caused instruction termination. ※3  

11 Homing failed. 

16 Axis not enabled; thus instruction cannot execute. 

17 MCRESET cannot execute unless in "fault stop" state. 

18 Axis in "stop" state; instruction cannot execute. 

19 Axis is homing; instruction cannot execute. 

20 Axis in continuous motion; instruction cannot execute. 

21 Axis is positioning; instruction cannot execute. 

31 Axis in "fault stop" state; instruction cannot execute. ※3  

33 
Axis remains in "stop" state or drive disconnected during execution; instruction cannot execute. 

※4 

250 Axis enable timeout. 

251 Servo/motor drive error. ※3  

255 Servo/motor drive disconnected. ※3  



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 167 - 
 

10 EtherCAT Communication 

10.1 Overview 

EtherCAT is an open industrial Ethernet-based fieldbus technology featuring short communication refresh 

cycles, low synchronization jitter, and cost-effective hardware. For EtherCAT principles and technical details, refer 

to the Design and Application of Industrial Ethernet Fieldbus EtherCAT Drivers or visit the EtherCAT Technology 

Group official website: https://www.EtherCAT.org.cn. The SH and SH500 series support standard EtherCAT 

interfaces (1×RJ45 port), accommodate up to 72 EtherCAT slave nodes in a linear topology, and enable a minimum 

bus cycle time of 1ms. 

 

10.2 EtherCAT Interface Specifications 

Item Specification 

Transmission speed 100Mbps: 100BASE‑TX 

Modulation Baseband 

Topology Line, Daisy-chain 

Transmission medium Shielded twisted pair cables of Category 5 and above with aluminum foil and 

braided mesh 

Transmission distance Node-to-node distance: ≤100 m 

Connection capacity 72 

 

10.3 Master Configuration 

10.3.1 Importing Device XML 
Importing device XML refers to loading ETG (EtherCAT Technology Group) compliant device description files 

(.xml) into AutoSoft programming software. After parsing, these files generate configurable EtherCAT devices for 

user operations like addition or deletion. AutoSoft integrates common SLANVERT EtherCAT slave devices, 

requiring no separate installation. Third-party EtherCAT devices must have their description files installed first. 

Example: Importing SLANVERT SD710 drive. 

1. Create a new project. In Project Manager area, right-click "EtherCAT"-> Add Device -> Import, as shown below: 

 

 
Note: 

➢ If XML import fails due to system permission restrictions, manually copy the XML file to the installation 

directory \Config\xml, then reopen the software. 

 

10.3.2 Scanning Slaves 
1. Ensure the “Enable” control for the EtherCAT device in the current running PLC project is selected. If 

unchecked, check it, then compile and download the project once, as shown below: 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 168 - 
 

 
 

2. Right-click EtherCAT -> Auto-Scan. A prompt will indicate that the PLC must be stopped, as shown below: 

 
 

3. Click “Update” to let the software automatically detect connected slaves.  

 
 

4. After completion, the configuration updates as shown below: 

 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 169 - 
 

 
 

Note: 

➢ EtherCAT slave scanning is only permitted when the PLC is in Stop mode. 

 

10.3.3 Configuring the Master 
1. Double-click EtherCAT in Project Manager area. Configure parameters such as Enable Control, Cycle 

Time, and Offset Time for the EtherCAT master in the Basic Settings panel, as shown below. 

 
Parameter Descriptions: 

Parameter Description 

Enable Control Enable: Activates EtherCAT functionality; Disable: Stops EtherCAT operation. 

Cycle Time Interval for EtherCAT data frame transmission and task cycle time. 

Offset Time Percentage offset of the EtherCAT task relative to the Sync0 interrupt of slaves. 

Use LRW 

instead of 

LWR/LRD 

Default: Unchecked (separate Logical Read/Write). 

Check to use combined Logical Read-Write. 

Note: For some slaves only support separate modes, leave unchecked. 

 

Allow 

mismatched 

number of slave 

stations 

Check to permit slave initialization when configured slave count mismatched with physically 

connected slaves. Unchecked: Configured slave counts must match the physically connected 

slaves. Note: Excess slaves are treated as virtual axes. 

Configure the 

slave station 

separately 

Check to assign separate PDO packets per slave. Unchecked: All slaves share PDO packets. 

Note: If unchecked, one slave disconnection will disrupt the entire network. If checked, 

disconnected slaves do not affect others; monitor offline slaves via system parameter 

_ECATSlave[x].ipackLossSign. X indicates 0~71 station number. 

Keep connected 

(not checking 

for 

disconnections) 

Check to trigger an alarm (without disconnection handling) for offline slaves. Offline status 

flags are not updated, preventing specific slave monitoring. 

Automatically Check to auto-restart slaves upon reconnection. 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 170 - 
 

restart the slave 

station 

Note: Enabling this restarts all slaves. To restart only offline slaves, also enable "Configure the 

slave station separately." 

 

10.3.4 Start/Stop/Disable/Enable 
(1) Start/Stop Control 

Supports starting and stopping the entire EtherCAT bus but not individual slaves. Operations include: 

⚫ When the PLC transitions from STOP to RUN mode, the EtherCAT master starts automatically. 

⚫ When the PLC transitions from RUN to STOP mode, the EtherCAT master stops automatically. 

⚫ The EtherCAT master can be restarted via instructions during PLC operation. 

 

Note: 

➢ Only the entire EtherCAT bus can be started/stopped; individual slave control is unsupported. 

  

(2) Auto-Restart 

Call the E_RestartMaster instruction to restart the EtherCAT master, as shown below: 

 
(3) Disable/Enable 

Double-click the EtherCAT, then select Enable or Disable in the Basic Settings panel. 

 
 

10.3.5 Monitoring Master System Variables 
Master status, such as running, stopped, connection state, connected slave count, and current sync cycle time, 

can be monitored via the system variable _ECATMaster. 

System Variables Data Type Function 

bMasterEnableState 

BOOL 

Master enable status. Becomes TRUE when the EtherCAT master 

receives a run command and all slaves are activated. Note: Remains 

TRUE even if partial slaves disconnect during operation. 

bLinkState 
BOOL 

Master connection status. Turns ON if at least one slave maintains 

physical connection; otherwise OFF. 

dCycleTime DINT Master cycle time (ns). Current configured sync cycle time. 

dTaskExeTime 
DINT 

Master task execution time (ns). Current sync cycle time of the 

EtherCAT bus. 

iMasterState 
INT 

Master bus state. Initialization states 1/2/4/8; state 8 indicates 

initialization complete. 

iSlaveNumber INT Number of connected slaves.  

iDcSlaveNumber INT Number of DC-supported slaves connected to the master. 

iLossPackeCounter INT Master packet loss cumulative counter 

dPdoInLength DINT Master PDO input length (bytes). 

dPdoOutLength DINT Master PDO output length (bytes). 

iCycleJitter INT Master PDO output length 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 171 - 
 

iEthercatRun INT Master run flag: 0=stop, 1=initialization, 3=running. 

iScanReady INT Master scan status: 0=not ready, 1=ready. 

 

10.4 Slave Configuration 

10.4.1 Distributed Clock 
1. It is used to configure the slave's synchronous operation mode. 

 
Function Parameter Description: 

Sync Mode Selection: Options typically include FreeRun (free-running), SM-Synchron (synchronized to I/O 

events), and DC-Synchron (synchronized to Distributed Clock). Supported modes vary by slave. 

(1) Take SH-ECT coupler as an example: 

It supports SM-Synchron mode and SYNC0/SYNC1 configurations are unavailable. The slave’s internal 

clock triggers interrupts only for data I/O events. Internal logic is as shown below: 

 

 
 

(2) Take SD710 drive as an example: 

It supports DC-Synchron mode only and SYNC interrupts are configurable. 

Default settings: DC sync event enabled, SYNC0 interrupt enabled (cycle matches master cycle time), and 

SYNC1 interrupt disabled. 

Data I/O event Data I/O event

Cycle time

Data frame
Data frameProgram 

execution time

Sync 0 

interrupt
Sync 0 

interrupt

 
 

 

Note: 

➢ In DC-Synchron mode, avoid modifying default configurations unless fully understanding EtherCAT 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 172 - 
 

communication principles. 

 

10.4.2 Process Data 
1. The Process Data interface is used to configure PDO. Example interface: 

 
 

PDOs are categorized by data direction: 

⚫ Output PDO: Data sent from EtherCAT master to slave (e.g., control word 0x6040). 

⚫ Input PDO: Data sent from EtherCAT slave to master (e.g., status word, feedback speed/position). 

⚫ A slave may have single or multiple PDO groups. As shown above, the second input/output PDO groups 

can be edited (add/modify/delete). 

2. Adding a PDO: 

 
 

① Select a PDO in the second group. 

② Click Add. 

③ Select 0×6060. 

④ Click OK. 

3. When a slave has multiple PDO groups, mutual exclusion relationships may exist between groups (e.g., 

SD710) where only one group can be selected at a time. These mutual exclusion relationships vary 

depending on the slave. 

 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 173 - 
 

 
The master configures PDO into slaves through PDO Assignment and PDO Mapping by downloading these 

settings as startup parameters. 

"PDO Assignment" selects specific PDO group numbers for download to the slave, while "PDO Mapping" 

configures editable internal PDO entries within the selected group. Failure to enable both options during PDO 

modifications may cause slave startup failures. These configurations can be verified in the startup parameters list. 

 

10.4.3 Startup Parameters 
1. Startup parameters are used to configure PDO settings, manufacturer-specific parameters, and protocol-

defined parameters (e.g., 402 protocol) into the slave via SDO writes while the slave is in PreOP state. 

Take SD710 configuration as an example: 

 
2. Add object dictionary entry 0x6098 to the "Startup Parameters" and set its value to 35, as illustrated below: 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 174 - 
 

 
① Click Add 

② Select 0x6098 

③ Modify the value to 35 

④ Click OK 

 

10.4.4 I/O Mapping 
PDO data must be mapped to PLC internal variables to control EtherCAT slaves via these variables. The I/O 

Mapping interface is shown in the figure below: 

 
 

When a slave is added, a set of internal variables linked to its PDO is automatically created, as illustrated below: 

 
 

Note: 

➢ If a slave is associated with a motion control axis (e.g., SD710), its variables can only be controlled via axis 

commands. The mapped registers in I/O Mapping serve solely as monitoring addresses. 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 175 - 
 

➢ For drives, data exchange with the slave is performed through the mapped register addresses in I/O Mapping. 

Associated Variables 

Double-click "None", select a D/R/W variable type and enter the address in the pop-up dialog, and click OK, as 

shown below: 

 

10.4.5 Slave System Variables 
System variables related to EtherCAT slaves are listed below: 

System Variables Data Type Description 

iState 

INT 

Slave current bus state 

1:INT 

2:PreOP 

4:SafeOP 

8:OP 

Note: In OP state (8), this value remains unchanged even if the 

slave disconnects. 

iALstatescode 
INT 

AL states code. Indicates state machine transition failure (see slave 

manual). 

iConfigaddr 
INT 

Configuration address. Default: starts at 30000 + connection 

sequence number (e.g., 30001 for the first slave). 

iAliasaddr INT Slave alias address. Default: 0 (currently unsupported). 

dEep_man DINT Slave equipment manufacturer ID 

dEep_id DINT Slave equipment ID 

iItype INT Interface type 

iDtype INT Device type 

iObits INT PDO output bits 

iObytes INT PDO output bytes 

iOstartbit INT PDO output start bit 

iIbits INT PDO input bits 

iIbytes INT PDO input bytes 

iIstartbit INT PDO input start bit 

iHasdc INT DC support 

iPtype INT PHY interface type 

iTopology INT Topology 

iActiveports INT Active ports 

iParent INT Parent slave ID 

iParentport INT Parent port ID 

iEntryport INT Entry port 

iSlotConfig INT 

Slot configuration flag. 

Note: Set to 1 for SH-ECT couplers or multi-drop slaves; 0 for 

single slaves. 

iRdSlotsNum INT Read slot number. Displays the number of connected slots. 

dRdSlotsIds[31] Array Read slot ID. Displays module IDs in connected slots in order. 



EtherCAT Communication                                 SH100/300/SH500 PLC Programming and Application Manual  

- 176 - 
 

dEep_rev DINT Slave equipment version 

iPackLossCounter INT 
Cumulative packet loss counter. Increments continuously after 

slave disconnection. 

iPackLossSign INT Pack loss sign. Set to 1 if the slave is offline. 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 177 - 
 

11 EtherCAT Motion Control 

11.1 Overview 

11.1.1 Basic Structure and Control Logic 
In motion control systems, the controlled object is referred to as an axis. An axis acts as a bridge between the 

drive and PLC instructions. Motion control axes are used to control EtherCAT bus drives compliant with the 402 

protocol, as well as local high-speed pulse outputs and inputs. 

 

 
 

 

 

Within the PLC, the basic structure and processing logic of an axis are as follows: 

 

User program

Control command

Feedback status

Target position (user 

units)

Feedback position 

(user units)

Driver

Control word

Status word

Target position (pulse 

units)
Feedback position 

(pulse units)

Axis structure

PLCOpen state machine 

management unit

User 

coordinate 

processing 

unit

Motion 

axis 

planning 

unit

Pulse 

coordinate 

processing 

unit

 
 

11.1.2 Motion Instruction Scheduling Mechanism 
The Main program, subroutines, and interrupt routines are available for user programming. However, motion 

control instructions can only be executed in the Main program or subroutines and must not be called within interrupt 

routines. 

The EtherCAT task is a hidden task and not accessible to users. Therefore, programming within the EtherCAT 

task is not supported. 

 

User program scan execution

EtherCAT axis motion control & PDO transfer (highest priority, preemptive)

User program/EtherCAT task instruction interaction

Program idle task

User program execution

EtherCAT task

EtherCAT axis Instruction data 

exchange

Idle task

EtherCAT cycle EtherCAT cycle EtherCAT cycle EtherCAT cycle EtherCAT cycle EtherCAT cycle EtherCAT cycle EtherCAT cycle

Program scan cycle Program scan cycle Program scan cycle

PLC run task

 
 

 

11.1.3 Axis Type Configuration 
Supported axis types include bus servo axis, local pulse axis, bus encoder axis (not supported), and local encoder 

axis. 

Axis Type Description 

Bus servo axis Axis controlled via EtherCAT slave servo drives. 

Supports torque, position, velocity, homing, and other basic control modes. 

Virtual axis mode is supported. 

Local pulse axis Supports 4×local pulse axes: Y0/Y1, Y2/Y3, Y4/Y5, Y6/Y7. 

EtherCAT Master 
Motion Control 

Instructions 

(MC Instructions) 

EtherCAT Slave 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 178 - 
 

● Controls pulse-driven axes using local high-speed I/O. 

Pulse output modes: Pulse + direction, CW/CCW, AB phase. 

Probe: 2×probe inputs per pulse axis. 

Motion control: Supports positioning, linear/circular interpolation, and homing functions. 

Bus encoder axis Reserved 

Local encoder axis Supports 8×single-phase (200 kHz) or 4×AB-phase high-speed (200 kHz) inputs. 

Counting modes: Linear axis or rotary axis. 

Probe: 8×probe inputs total. Note: Probe and counter ports are shared; only one function can be 

used per port. 

 

A properly configured axis involves three components: 

Component Function 

Axis 

configuration 

parameters 

Configures axis settings, such as mode, gear ratio, homing type, and encoder mode. 

Axis system 

variables 

Monitors axis status and errors (e.g., current position, fault codes). 

Axis control 

instructions 

Executes motion control via MC instructions in user programs. 

MC instructions are categorized into: Management (e.g., MC_Power), Motion (e.g., MC_Jog), and 

Status (e.g., MC_ReadStatus). 

 

11.1.4 PLCOpen State Machine 
The PLCOpen State Machine manages axis states and motion by executing specific functions in each state. The 

state transition diagram is shown below: 

Done

Done

 
State Descriptions 

State Value State Description 

0 Disabled Axis is inactive. 

1 ErrorStop Axis stopped due to an error. 

2 Stopping Axis is decelerating to a standstill. 

3 Standstill Axis is enabled and stationary. 

4 DiscreteMotion Axis is in discrete motion. 

5 ContinuousMotion Axis is in continuous motion. 

7 Homing Axis is performing homing. 

8 SynchronizedMotion Axis is synchronized with other axes or 

processes. 

11.1.5 Axis Parameter Description 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 179 - 
 

Axis parameter configuration consists of three parts: User Units & Axis Configuration Parameters, Axis System 

Variables, and Axis Control Instructions. These components are described below: 

User Units 

Two units are used in the axis structure: User Unit and Pulse Unit. 

Unit Description 

User unit Measurement units, such as millimeters, centimeters, and degrees, used in instruction operations, 

denoted as Uint. 

User coordinate systems are categorized into Linear Coordinate and Rotational Coordinate based 

on application requirements: 

Linear coordinate: Includes a zero point. Increasing the target position represents positive 

movement; decreasing it represents negative movement. Supports positive/negative soft limits. 

Rotational coordinate: Includes a zero point and a cycle period. Within one cycle, increasing the 

target position represents clockwise motion; decreasing it represents counterclockwise motion. 

Pulse unit Unit based on pulse count used on the drive side, denoted as pluse. 

Drive parameters typically include a pulse zero point and encoder pulses per motor rotation. 

Axis Configuration Parameters 

Configure motion control axis properties to meet application requirements. The parameters are summarized 

below: 

Type Parameter Bus Servo Axis Local Pulse Axis 

 

 

 

Basic Settings 

Axis number ✓ ✓ 

Axis type ✓ ✓ 

Associated device (Not associated = 

virtual axis) 
✓ ✓ 

Auto mapping ✓ × 

PDO ✓ × 

 

 

Unit Conversion 

REV ✓ ✓ 

Pulses per motor/encoder revolution ✓ ✓ 

Workpiece movement per revolution 

(Background) 
✓ ✓ 

Gear ratio numerator ✓ ✓ 

Gear ratio denominator ✓ ✓ 

 

 

 

 

Mode/Parameters 

Encoder mode ✓ × 

Linear/Rotary mode ✓ ✓ 

Software limits ✓ ✓ 

Follow error ✓ ✓ 

Axis velocity ✓ ✓ 

Torque limit ✓ × 

Probe × ✓ 

Output × ✓ 

The homing mode parameters are configured as follows: 

Type Parameter Bus Servo Axis Local Pulse Axis 

 

 

 

 

 

 

 

Homing Settings 

Home signal ✓ ✓ 

Positive limit ✓ ✓ 

Negative limit ✓ ✓ 

Z-signal ✓ × 

Homing direction ✓ ✓ 

Home input polarity ✓ ✓ 

Homing method ✓ ✓ 

Homing velocity ✓ ✓ 

Homing approach velocity ✓ ✓ 

Homing acceleration ✓ ✓ 

Homing timeout ✓ ✓ 

Negative limit input × ✓ 

Positive limit input × ✓ 

Home signal configuration × ✓ 

 

Axis System Variables 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 180 - 
 

In the program, the current status of an axis can be monitored through its system variables. The system variables 

for bus servo axes/local pulse axes are listed in the table below: 

System Variables Data Type Description 

dPulsesPreCycle DINT Pulses per revolution (motor/encoder) 

fDistancePreCycle REAL Workpiece movement per revolution 

dNumerator DINT Gear ratio numerator 

dDenorminator DINT Gear ratio denominator 

bDirection BOOL Direction 

bSoftLimitEnable BOOL Software limit enable 

fPLimit REAL Positive limit in linear mode 

fNLimit REAL Negative limit in linear mode 

iLineRotateMode INT Linear/rotational mode selection 

0: linear; 1: rotational 

fRotation REAL Cycle in rotational mode 

EncodeMode INT Encoder mode (valid in bus servo axis) 

1: incremental; 0: absolute 

iHomeMethod INT Homing method 

fHomeVelocity REAL Homing velocity 

fHomeApproachVelocity REAL Homing approach velocity 

fHomeAcceleration REAL Homing acceleration 

iHomeTimeOut INT Homing timeout 

bPLimitTerminalPolarity BOOL Positive limit terminal polarity (valid in local pulse axis) 

bNLimitTerminalPolarity BOOL Negative limit terminal polarity (valid in local pulse axis) 

bHomeTerminaPolarity BOOL Home terminal polarity (valid in local pulse axis) 

iPLimitType INT Positive limit input type (valid in local pulse axis) 

0: X, 1: M, 2: S 

iPLimitID INT Positive limit input number (valid in local pulse axis) 

X0~7/M0~M/S0~S 

iNLimitType INT Negative limit input type (valid in local pulse axis) 

0: X, 1: M, 2: S 

iNLimitID INT Negative limit input number (valid in local pulse axis) 

iHomeInType INT Home input type (valid in local pulse axis) 

0: X, 1: M, 2: S 

iHomeInID INT Home input number (valid in local pulse axis) 

iEncoderInType INT Local encoder input type (valid in local encoder) 

iEncoderRstInEn INT Local encoder reset input enable (valid in local encoder) 

iEncoderRstInID INT Local encoder reset input ID (valid in local encoder) 

iEncoderEnInEn INT Local encoder enable input enable (valid in local encoder) 

iEncoderEnInID INT Local encoder enable input ID (valid in local encoder) 

iEncoderPreSetInEn INT Local encoder preset input enable (valid in local encoder) 

iEncoderPreSetInID INT Local encoder preset input ID (valid in local encoder) 

iPluseMethod INT Pulse output method (valid in local pulse axis) 

bTouchProbeEn0 BOOL Touch probe 0 input enable (valid in local pulse axis) 

iTouchProbeID0 INT Touch probe 0 ID (valid in local pulse axis) 

0~7: X0~7 

bTouchProbeEn1 BOOL Touch probe 1 input enable (valid in local pulse axis) 

iTouchProbeID1 INT Touch probe 1 ID (valid in local pulse axis) 

0~7: X0~7 

bCmpEnable BOOL Comparison output enable (valid in local pulse axis) 

iCmpOutID INT Comparison output port ID (valid in local pulse axis) 

0~7: Y0~7 

iCmpOutUnit INT Comparison output unit (valid in local pulse axis) 

iCmpOutWidth INT Comparison output width (valid in local pulse axis) 

fErrorStopDeceleration REAL Axis error stop deceleration 

fFollowErrorWindow REAL Follow error window 

fMaxVelocity REAL Maximum velocity 

fMaxJerkVelocity REAL Maximum jerk velocity 

fMaxAcc REAL Maximum acceleration 

iMaxTorque INT Maximum torque 

iMapped INT Axis parameter mapping flag 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 181 - 
 

iType INT Axis type 

iSlave INT Axis mapping ID 

iVirtualAxis INT Virtual axis flag 

iEnableStatus INT Axis enable status 

iAlmStatus INT Axis alarm status 

iAxisOprationStatus INT Axis operation status 

iCheckDoingStatus INT Axis motion status 

0: stopped 1: running 

iInterpNum INT Interpolation channel number 

iInterpBitType INT Control mode flag bits 

bit0: P_Task, bit1: S_Task, bit2: F_Task, bit3: cam 

dCommandPulse DINT Current command position 

hEncoderCounter DINT Encoder high-order counter 

dEncoderPos DINT Encoder feedback position 

11.1.6 Axis Control Instructions 
Single-axis control instructions are listed below. For detailed usage, refer to the SH Series PLC Instruction 

Manual. 

 

Instruction Name 

MC_Power Enable axis control 

MC_Reset Reset fault 

MC_Home Homing 

MC_Homing Axis homing 

MC_Stop Stop 

MC_MoveVelocity Velocity control 

MC_Jog Jog 

MC_Move Positioning 

MC_ReadAxisError Read axis error 

MC_ReadPosistion Read actual position 

MC_ReadStatus Read axis status 

MC_TorqueControl Torque control 

MC_SetPosition Set position 

MC_MoveSuperImposed Superimposed motion 

MC_TouchProbe Touch probe 

MC_Linear Linear interpolation 

MC_Circle_CW Clockwise circular interpolation 

MC_Circle_CCW Counter-clockwise circular interpolation 

MC_MoveBuffer Multi-segment move 

MC_MoveAbsolute Absolute move 

MC_MoveRelative Relative move 

MC_ReadVelocity Read actual velocity 

MC_MoveFeed Feed-interrupt move 

MC_Halt Motion halt 

MC_SyncTorqueControl Synchronized torque control 

MC_ReadActualTorque Read actual torque 

MC_FollowVelocity Velocity superposition control 

MC_ReadDigitalInput Read digital inputs 

MC_MoveVelocityCSV CSV-based variable pulse width velocity control 

MC_SyncMoveVelocity CSV-based synchronized velocity control 

MC_MoveThreeDimensionalCircular Three dimensional circular interpolation 

MC_MoveSpiral Spiral interpolation 

MC_SetAxisConfigPara Axis parameter configuration 

MC_SetAxisBackLash Set backlash compensation 

MC_GetAxisBackLash Get backlash compensation status 

 

 

11.1.7 Online Modification of Axis Configuration Parameters 
⚫ Users can modify configuration parameters of individual axes via the PLC program to meet different 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 182 - 
 

application requirements, such as software limits and rotation period in ring mode. 

⚫ When modifying axis configuration parameters in the PLC program, use the _McAxis system structure 

variable to set parameters. This structure data is not retained after power loss. Upon PLC restart, axis 

configuration parameters from the software backend will initialize this structure variable. 

⚫ Modify the initialized variable values as needed and execute the MC_SetAxisConfigPara instruction to 

validate the settings. 

 

 

Note: 

➢ Instruction execution requires completion of EtherCAT bus initialization. Modifications made before 

initialization may result in parameter configuration failures. 

➢ When modifying parameters during operation, set the MC_Power instruction's power flow to OFF. 

➢ Axis configuration parameters are non-retentive variables, thus previously set values will be lost after PLC 

reboot. Reconfigure parameters after each PLC startup. 

Structure _McAxis 

Name Data Type R/W Description Index 

_McAxis[0] Struct / / / 

_McAxis[0].dPulsesPreCycle DINT WR 
Pulses per cycle 

(motor/encoder) 
 

 

1 

_McAxis[0].fDistancePreCycle REAL WR Workpiece movement per cycle 

_McAxis[0].dNumerator DINT WR Gear ratio numerator 

_McAxis[0].dDenorminator DINT WR Gear ratio denominator 

_McAxis[0].bDirection BOOL WR Direction 

_McAxis[0].bSoftLimitEnable BOOL WR Software limit enable 

2 

_McAxis[0].fPLimit REAL WR Positive limit in linear mode 

_McAxis[0].fNLimit REAL WR Negative limit in linear mode 

_McAxis[0].iLineRotateMode INT WR 

Linear/Rotary mode 

0: linear; 

1: rotational 

_McAxis[0].fRotation REAL WR Cycle in rotational mode 

_McAxis[0].EncodeMode INT WR 

Encoder mode (valid in bus 

servo axis) 

1: absolute 

0: incremental 

3 

_McAxis[0].iHomeMethod INT WR Homing method 

4 

_McAxis[0].fHomeVelocity REAL WR Homing velocity 

_McAxis[0].fHomeApproachVelocity REAL WR Homing approach velocity 

_McAxis[0].fHomeAcceleration REAL WR Homing acceleration 

_McAxis[0].iHomeTimeOut INT WR Homing timeout 

_McAxis[0].bPLimitTerminalPolarity BOOL WR 
Positive limit terminal polarity 

(valid in local pulse axis) 

5 

_McAxis[0].bNLimitTerminalPolarity BOOL WR 
Negative limit terminal polarity 

(valid in local pulse axis) 

_McAxis[0].bHomeTerminaPolarity BOOL WR 
Home terminal polarity 

(valid in local pulse axis) 

_McAxis[0].iPLimitType INT WR 

Positive limit input type 

0: X, 1: M, 2: S 

(valid in local pulse axis) 

_McAxis[0].iPLimitID INT WR 

Positive limit input number 

X0~7/M0~Mxx/S0~Sxx 

(valid in local pulse axis) 

_McAxis[0].iNLimitType INT WR 

Negative limit input type 

0: X, 1: M, 2: S 

(valid in local pulse axis) 

_McAxis[0].iNLimitID INT WR 
Negative limit input number 

(valid in local pulse axis) 

_McAxis[0].iHomeInType INT WR 

Home input type 

0: X, 1: M, 2: S 

(valid in local pulse axis) 

_McAxis[0].iHomeInID INT WR 
Home input number 

(valid in local pulse axis) 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 183 - 
 

_McAxis[0].iEncoderInType INT WR 
Encoder input type 

(valid in local encoder) 

_McAxis[0].iEncoderRstInEn INT WR 

Local encoder reset input  

enable 

(valid in local encoder) 

_McAxis[0].iEncoderRstInID INT WR 

Local encoder reset input 

number 

(valid in local encoder) 

_McAxis[0].iEncoderEnInEn INT WR 

Local encoder enable input 

enable 

(valid in local encoder) 

_McAxis[0].iEncoderEnInID INT WR 

Local encoder enable input 

number 

(valid in local encoder) 

_McAxis[0].iEncoderPreSetInEn INT WR 

Local encoder pre-set input 

enable 

(valid in local encoder) 

_McAxis[0].iEncoderPreSetInID INT WR 

Local encoder pre-set input 

number 

(valid in local encoder) 

_iPluseMethod INT WR 
Pulse output method 

(valid in local pulse axis) 
6 

_McAxis[0].iPluseMethod INT WR 
Pulse output method 

(valid in local pulse axis) 

7 

_McAxis[0].bTouchProbeEn0 BOOL WR 
Touch probe 0 input enable 

(valid in local pulse axis) 

_McAxis[0].iTouchProbeID0 INT WR 

Touch probe 0 input number 

0~7: X0~7 

(valid in local pulse axis) 

_McAxis[0].bTouchProbeEn1 BOOL WR 
Touch probe 1 input enable 

(valid in local pulse axis) 

_McAxis[0].iTouchProbeID1 INT WR 

Touch probe 1 input number 

0~7: X0~7 

(valid in local pulse axis) 

_McAxis[0].bCmpEnable BOOL WR 
Comparison output enable 

(valid in local pulse axis) 

8 

_McAxis[0].iCmpOutID INT WR 

Comparison output port number 

0~7: Y0~7 

(valid in local pulse axis) 

_McAxis[0].iCmpOutUnit INT WR 
Comparison output unit 

(valid in local pulse axis) 

_McAxis[0].iCmpOutWidth INT WR 
Comparison output width 

(valid in local pulse axis) 

_McAxis[0].fErrorStopDeceleration REAL WR Axis error stop deceleration 

9 

_McAxis[0].fFollowErrorWindow REAL WR Follow error window 

_McAxis[0].fMaxVelocity REAL WR Maximum velocity 

_McAxis[0].fMaxJerkVelocity REAL WR Maximum jerk velocity 

_McAxis[0].fMaxAcc REAL WR Maximum acceleration 

_McAxis[0].iMaxTorque INT WR Maximum torque 

_McAxis[0].dConfigReserved[16] DINT WR Reserved 

_McAxis[0].iMapped INT RO Axis parameter mapping flag / 

_McAxis[0].iType INT RO Axis type / 

_McAxis[0].iSlave INT RO Axis mapping ID / 

_McAxis[0].iVirtualAxis INT RO Virtual axis flag / 

_McAxis[0].iEnableStatus INT RO Axis enable status / 

_McAxis[0].iAlmStatus INT RO 

Axis alarm status 

0x0001: Hardware positive limit 

0x0002: Hardware negative 

limit 

0x0004: Software positive limit 

/ 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 184 - 
 

0x0008: Software negative limit 

0x0010: Position deviation error 

_McAxis[0].iAxisOprationStatus INT RO Axis operation status / 

_McAxis[0].iCheckDoingStatus INT RO 
Axis motion status 

0: stop, 1: running 
/ 

_McAxis[0].iInterpNum INT RO Interpolation channel number / 

_McAxis[0].iInterpBitType INT RO 

Control mode flags 

bit0: P_Task, bit1: S_Task, 

bit2: F_Task, bit3: cam 

/ 

_McAxis[0].dCommandPulse DINT RO Current command position / 

_McAxis[0].dDeltaCommand DINT RO 
Feedback-to-command position 

deviation 
/ 

_McAxis[0].dEncoderPos DINT RO Encoder feedback position / 

_McAxis[0].dStatusReserved[16] DINT RO Reserved / 

 

Axis Parameter Modification Example 

1. Original axis configuration parameters use default values. Modify the axis configuration parameter from 

1 Unit to 10 Unit via command. 

 
2. Develop a PLC program to modify the travel distance per revolution of Axis 0's worktable to 10 Units. 

Execute the MC_SetAxisConfigPara command to validate the modifications. Trigger the parameter 

modification command after EtherCAT bus initialization is completed. (Note: For the relationship between 

Index values and axis parameters, refer to the "Structure _McAxis" table above.) 

 

 
 

11.2 Motion Control Axis Configuration 

11.2.1 Axis Type 
Both bus servo axes and local pulse axes are controlled using the same set of MC instructions and share an 

identical axis structure design. The following outlines the differences between them. 

Item Local Pulse Axis Bus Drive 

Axis type Select local pulse axis Select bus servo axis 

Associated 

devices 

Assign output ports Y0/Y1, Y2/Y3, Y4/Y5, 

Y6/Y7 

Configure PDO mapping to relevant 

variables 

Pulse output 

form 

Pulse+direction, CW/CCW, AB phase \ 

Probe Supports 2 channels of probe Configure probe terminals according to 

EtherCAT drive manual 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 185 - 
 

Homing Supports homing methods specified in 402 

protocol (excluding Z signal) 

Supports homing methods 1~35 specified in 

402 protocol Limit and home signals must be 

connected to the drive 

11.2.2 Basic Settings 
1. The Basic Setting interface is used to set the axis type, confirming whether the axis functions as a bus servo 

axis, local pulse axis, or local encoder axis, as shown in the figure below: 

 
 

 

Parameter Descriptions 

⚫ Axis Number: Each axis is assigned a unique identifier (0~71) and cannot be manually modified. The axis 

number serves as the input parameter for MC instructions to access the axis. 

⚫ Axis Type: Options include bus servo axis, local pulse axis, bus encoder axis (not supported), and local encoder 

axis. 

⚫ Associated Device: For bus servo axis, select the EtherCAT servo drive. For local pulse axis, assign local high-

speed output terminals (Y0/Y1, Y2/Y3, etc.). For local encoder axis, assign local high-speed input terminals. If 

unassigned, the axis operates as a virtual axis. 

⚫ Auto Mapping: Valid only for bus servo axis. EtherCAT slaves use PDO-based cyclic communication, where 

the axis connects to the slave's object dictionary via cyclic variables. Enabling auto-mapping assigns mappings 

automatically; manual configuration is disabled. 

For details on the object dictionary parameters of bus servo axes, please refer to the standard 402 protocol. 

Loop Variable Object Directory Function 

Controlword 0x6040 Control word 

TargetPosition 0x607A Target position value 

TargetVelocity 0x60FF Target velocity value 

Settorque 0x6071 Target torque 

Modesofoperation 0x6060 Control mode 

Touchprobefunction 0x60b8 Probe mode 

Physicaloutputs 0x60fe:1 Physical outputs 

StatusWord 0x6041 Status word 

ActPosition 0x6064 Actual position 

ActVelocity 0x606C Actual velocity 

Torqueactualvalue 0x6077 Actual torque value 

Modesofoperationdisplay 0x6061 Mode of operation display 

Digitalinputs 0x60fd Digital input status 

TouchProbeStatus 0x60b9 Touch probe status 

TouchProbePos1PosValue 0x60ba Touch probe 1 rising edge position 

TouchProbePos1NegValue 0x60bb Touch probe 1 falling edge position 

TouchProbePos2PosValue 0x60bc Touch probe 2 rising edge position 

Touchprobe2fallingedge 0x60bd Touch probe 2 falling edge position 

Errorcode 0x603f Error code 

11.2.3 Unit Conversion 
Item Function 

Pulses per motor/encoder 

revolution 

Sets the pulse count per motor/encoder revolution based on encoder 

resolution. 

Workpiece movement per Defines the workpiece movement per revolution. 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 186 - 
 

revolution 

Gear ratio numerator Numerator of the gear reduction ratio. 

Gear ratio denominator Denominator of the gear reduction ratio. 

 

For bus drives (local pulse axes), motor control uses pulse units, while motion control instructions operate in 

common measurement units (e.g., millimeters, degrees, inches), referred to as user units (Unit). Based on 

configuration parameters, the axis internally converts between these units. The conversion modes are categorized as 

follows: 

(I) Linear Axis Mode 

(1) Without a gear reduction mechanism, the conversion formula from user units to pulse units is as follows:  

Motor

 
 

Pulses per motor/encoder revolution[DINT]*Gear ratio numerator[DINT]

Workpiece movement per revolution[REAL]*Gear ratio denominator[DINT]

Pulse *Displacement[Uint]

  
Example with a 17-bit encoder drive: 

Set the parameters as: 

Pulses per motor/encoder revolution = 131072 

Workpiece movement per revolution = 1 

Gear ratio numerator = 1 

Gear ratio denominator = 1 

When a relative position command specifies a target displacement of 10 user units, the motion control axis sends 

1310720 pulses, resulting in 10 motor revolutions. 

(2) With a gear reduction mechanism, the conversion formula from user units to pulse units is as follows:  

 

Motor

Linear mode: Worktable

Lead

Gear 

ratio   
 

Pulses per motor/encoder revolution[DINT]*Gear ratio numerator[DINT]

Workpiece movement per revolution[REAL]*Gear ratio denominator[DINT]

Pulse *Displacement[Uint]

 
Example with a 17-bit encoder drive: 

Set the parameters as: 

Pulses per motor/encoder revolution = 131072 

Workpiece movement per revolution = 1 

Gear ratio numerator = 3 (N) 

Gear ratio denominator = 1 (M) 

When a relative position command specifies a target displacement of 1 user unit, the motion control axis sends 

393216 pulses, resulting in 3 motor revolutions and 1 workpiece revolution (1 lead). 

 

(II) Rotary Axis Mode 

The conversion formula from user units to pulse units is as follows:  

 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 187 - 
 

 
 

Pulses per motor/encoder revolution[DINT]*Gear ratio numerator[DINT]

Workpiece movement per revolution[REAL]*Gear ratio denominator[DINT]

Pulse *Displacement[Uint]

 
 

11.2.4 Mode Setting 
1. Basic settings interface varies depending on selected axis type. Visible parameter lists differ accordingly. 

 
 

Parameter Description 

Item Description 

Encoder Mode Encoder mode is valid only in bus servo axis mode, used with incremental or absolute 

encoder servo drives. Select based on the actual servo drive type. PLC processing modes: 

Incremental mode: 

The PLC ignores overflow-triggered revolution increments in the servo drive's 32-

bit encoder counter. The PLC does not retain the encoder's current position during power 

cycles. Upon restart, the axis calculates its current position solely using the single-turn 

position feedback from the servo drive. 

Absolute mode: 

The PLC tracks overflow-induced revolution increments in the 32-bit encoder 

counter. The PLC stores the encoder's current position during power cycles. Upon restart, 

the axis calculates the absolute position by reconciling the stored encoder position with 

real-time servo feedback. After the axis is enabled, the drive position (6064h) is converted 

and synchronized to the command position. 

 

 

 

 

 

 

 

 

 

 

 

Linear mode 

1. Linear mode is typically used in devices with mechanical motion ranges in X-

Y Cartesian coordinate systems. 

2. A zero point is usually defined in linear mode. 

3. Increasing feedback position indicates forward motion; decreasing feedback 

position indicates reverse motion. 

4. Forward and reverse software limits can be configured. When enabled, the axis 

can only operate within the defined range. 

 

Absolute positioning: If the target position > starting position, move forward by the 

distance (target – starting position). If the target position < starting position, move reverse 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 188 - 
 

 

 

 

 

 

 

 

Mode Setting 

by the distance (starting – target position). 

 

Relative positioning: For target displacement > 0: move forward by the displacement 

distance. For target displacement < 0: move reverse by the absolute value of the 

displacement. 

Velocity command in linear mode: For target velocity > 0: move forward. For target 

velocity < 0: move reverse. 

Ring mode 

⚫ Ring mode uses a cyclic counter that repeats infinitely within a defined range, 

commonly applied in turntables or spools. 

⚫ A zero point and rotation period are typically defined. The feedback position 

range is 0 ≤ feedback position < rotation period. 

⚫ In this mode, increasing feedback position indicates clockwise (CW) motion; 

decreasing feedback position indicates counterclockwise (CCW) motion. 

 
Software limits are disabled in ring mode. 

Relative positioning: For target displacement > 0: CW motion by the displacement 

distance. For target displacement < 0: CCW motion by the absolute value of the 

displacement. 

Absolute positioning: Forward: Apply modulo operation on the target position 

relative to the rotation period, and move CW from the starting position to the target. 

 
Reverse: Apply modulo operation on the target position, and move CCW from the 

starting position to the target. 

 
Shortest path: Compute the target position modulo the rotation period, and calculate 

the CW displacement from the starting position. If displacement ≤ half the rotation 

period, move CW; for else, move CCW. 

Current direction: Follow the axis’s last motion direction. For first-time power-on, 

move CW to the target. Velocity instruction in ring mode: For target velocity > 0, move 

CW; For target velocity < 0, move CCW. 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 189 - 
 

11.2.5 Software Limit 
When the soft limit is enabled, the system continuously monitors the axis' absolute position during motion. If 

the projected stopping position (calculated by T-curve deceleration from the current speed using the specified limit 

deceleration) exceeds the limit range, the axis will trigger the soft limit deceleration algorithm and interrupt ongoing 

positioning/speed commands. Soft limits are inactive during homing mode and torque mode. 

11.2.6 Error Deceleration 
If a motion command's internal logic failure during axis operation necessitates switching to the error stop state, 

the axis will perform T-curve deceleration using the configured error deceleration until it decelerates to zero. 

11.2.7 Following Error Threshold 
During positioning/speed commands execution, the servo drive operates in CSP (Cyclic Synchronous Position) 

mode with trajectory planning performed on the PLC side. The PLC sends target positions via 0x607A to the servo 

drive, while the motor encoder's actual position is fed back through 0x6064. The discrepancy between 0x607A and 

0x6064, converted into user units, is defined as the following error.  The SH500 configures the maximum allowable 

following error. If the absolute following error exceeds this threshold, the axis triggers an excessive following error 

fault and enters the errorstop state. 

11.2.8 Axis Velocity 
Set the maximum velocity, maximum acceleration, and maximum jerk. If any parameter (target velocity, 

acceleration, or deceleration) in positioning or velocity commands exceeds these limits, the command triggers a fault 

and the axis enters the ErrorStop state. 

11.2.9 Maximum Torque 
Maximum torque setting is exclusively applicable to bus-servo axes. 

If the target torque in torque commands exceeds the maximum torque limit, the command triggers a fault and 

the axis enters ErrorStop state. 

Positive/negative torque limit values are configured via startup parameters in the servo drive's object dictionary 

(0x60E0 and 0x60E1). 

11.2.10 Probe 
Local pulse axes can enable probe terminals through probe configuration. Bus axes require configuring relevant 

PDO. 

For local pulse axes, each axis supports up to two probe terminals. Probe terminal sources can be selected from 

X0~X7. 

After enabling probe terminals, local pulse axes can utilize probe instructions and interrupt fixed-length 

instructions. 

11.2.11 Pulse Output Mode Configuration 
Local pulse axes can be configured as four channels using Y0/Y1, Y2/Y3, Y4/Y5, or Y6/Y7. 

They support output in Pulse+Direction, CW/CCW, or AB-phase formats. 

For channels configured as pulse axes: In Pulse+Direction mode: Y0, Y2, Y4, Y6 are designated as pulse 

terminals; Y1, Y3, Y5, Y7 are direction terminals. In CW/CCW mode: Y0, Y2, Y4, Y6 are CW pulse terminals; 

Y1, Y3, Y5, Y7 are CCW terminals. 

11.2.12 Hardware Limit 
The axis system variables include bphlimit (hardware positive limit) and bnhlimit (hardware negative limit) 

indicating hardware limit states. When set to positive logic, these variables correspond to bits 1 and 0 of object 

dictionary 0x60FD, respectively. When configured as negative logic, their values are inverted from bits 1 and 0 of 

0x60FD. 

Hardware limit logic settings only affect these variables and have no impact on the servo's limit-triggered stop 

behavior. 

11.2.13 Origin Return 
The SH500 supports CiA402-compliant origin return methods 1~35, as shown below. 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 190 - 
 

 
Origin return configuration interface: 

Parameter Description 

Origin signal Enables/disables use of the origin signal. 

Unassigned: Not enforced as a mandatory filter. 

Not Used: Excludes returning methods requiring a origin signal. 

Use: Excludes returning methods incompatible with a origin signal. 

Z Signal Enables/disables use of the motor Z signal. 

Unassigned: Not enforced as a mandatory filter. 

Not Used: Excludes returning methods requiring a Z signal. 

Use: Excludes returning methods incompatible with a Z signal. 

Positive Limit Enables/disables use of the hardware right limit signal. 

Unassigned: Not enforced as a mandatory filter. 

Not Used: Excludes returning methods requiring a positive limit signal. 

Use: Excludes returning methods incompatible with a negative limit signal. 

Negative Limit Enables/disables use of the hardware left limit signal. 

Unassigned: Not enforced as a mandatory filter. 

Not Used: Excludes returning methods requiring a negative limit signal. 

Use: Excludes returning methods incompatible with a negative limit signal. 

Origin Return 

Direction 

Initial movement direction during origin return. 

Positive direction: Moves positive if limit/origin signal is inactive; otherwise, moves 

negative. 

Negative direction: Moves negative if limit/origin signal is inactive; otherwise, moves 

positive. 

Origin Input 

Direction 

Direction when triggering origin signal. 

Positive direction: Stops upon triggering origin signal edge during positive motion. 

Negative direction: Stops upon triggering origin signal edge during negative motion. 

Origin Logic Positive logic (high level)/Negative logic (low level). 

Origin Return Method Range: Method 1~35. Written to object dictionary 0x6098 via startup parameters. 

Origin Return Speed User unit converted to pulse units, written to sub-index 1 of object dictionary 0x6099 

via startup parameters. 

Origin Return 

Acceleration 

User unit converted to pulse units, written to object dictionary 0x609A via startup 

parameters. 

Near Point Speed User unit converted to pulse units, written to sub-index 2 of object dictionary 0x6099 

via startup parameters. 

Origin Return 

Timeout 

Unit: 10ms. 

 

In practice, origin return methods are filtered by parameters including origin signal, positive/negative limits, Z 

signal, origin return direction, and origin input direction, then selected via the origin return method option. 

Note that after applying filter criteria, multiple origin return methods may remain available. Select the 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 191 - 
 

appropriate method from the origin return method list. For example, the settings below filter two origin return 

methods: 

Signal Selection 

Origin Signal Use 

Negative Limit Not Used 

Positive Limit Use 

Z Signal Not Used 

Origin Return Direction FWD 

Origin Input Direction FWD 

Choose the required method (20, 24, or 26) based on field application requirements. 

 

11.2.14 Curve Type 
The system supports two velocity profiles: T-curve acceleration/deceleration and 5-segment S-curve 

acceleration/deceleration, determined by the SpeedMode parameter in instructions. Additionally, when axes 

encounter limits or require error-triggered deceleration to enter Errorstop state, T-curve deceleration is applied. 

(I) T-curve Velocity Profile 

When SpeedMode=0, axes execute T-curve acceleration/deceleration. The motion profile is planned based on 

target position, velocity, acceleration, and deceleration. During acceleration/deceleration phases, the actual 

acceleration/deceleration rates remain constant, as shown below. 

 
 

● Target position: Final absolute position in user units (Unit) for absolute positioning commands. 

● Target velocity: Maximum achievable velocity during motion in user units per second (Unit/s). 

● Target acceleration: Velocity change rate during acceleration in user units per second squared (Unit/t²). 

● Target deceleration: Velocity change rate during deceleration in user units per second squared (Unit/t²). 

● Acceleration phase: If initial velocity = Vs, target velocity = Vt, and acceleration =Acc, then the acceleration 

time: 

Tacc=(Vt-Vs)/Acc 

● Deceleration phase: If initial velocity = Vs, target end velocity = Ve, and deceleration = Dec, then the 

deceleration time: 

Tdec=(Vs-Ve)/Dec 

 

(II) S-Curve Velocity Profile 

When SpeedMode=1, the axis follows an S-curve acceleration/deceleration motion. This profile reduces 

mechanical shock by shaping the velocity waveform into an S-curve. The motion control instruction must specify at 

least velocity (v), acceleration (Acc) or deceleration (Dec), and jerk (Jerk): 

⚫ Velocity: Maximum axis speed during operation, in "units/s". 

⚫ Acceleration: Maximum acceleration during operation, in "units/s²". 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 192 - 
 

⚫ Jerk: Maximum rate of acceleration/deceleration change, in "units/s³". The specified Jerk value in instruction 

applies to both acceleration and deceleration phases. Adjusting Jerk can improve velocity smoothness. 

 
 

The relationship between velocity, acceleration, and jerk is illustrated in the following table: 
Phase Time (s) Jerk (units/s³) ACC/DEC (units/s²) Velocity (units/s) Motion Type 

1 0~2 Fixed at 10000 Acceleration increases to 20000 Velocity 
increases 

Acceleration-increasing 
accelerated motion 

2 2~5 Fixed at 0 Acceleration remains at 20000 Velocity 
increases 

Accelerated motion with 
constant acceleration 

3 5~7 Fixed at -10000 
 

Acceleration decreases to 0 Increases to 
100000 

Acceleration-decreasing 
accelerated motion 

4 7~13 Fixed at 0 Acceleration remains at 0 Constant at 
100000 

Uniform motion 

5 13~15 Fixed at -10000 
 

Deceleration increases to 20000 Velocity 
decreases 

Deceleration-increasing 
decelerated motion 

6 15~18 Fixed at 0 Deceleration remains at 20000

  

Velocity 

decreases 

Decelerated motion with 

constant deceleration 

7 18~20 Fixed at 10000 Deceleration decreases to 0 Decreases to 0 Deceleration-decreasing 
decelerated motion 

 

11.3 Quick Setup Example for EtherCAT Axis 

Taking the SH523 as an example, this demonstrates controlling a drive via EtherCAT communication to execute 

a positioning movement with the following motion profile: acceleration time 1 s, deceleration time 1 s, velocity 300 

r/min, and displacement of 10 units. Steps: 

New Project 

1. Open AutoSoft software and create a new project. Select SH523 as the PLC series and type, as shown 

below: 

 
 

2. After creating the project, enter the main interface.  



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 193 - 
 

 
Interface Descriptions 

① Menu Bar ② Toolbar ③ Project Manager ④ Instruction Tree ⑤ Programming Area 

11.3.1 Bus/Local Pulse Axis Configuration 
To properly control a bus drive, the programming software requires configuring a servo drive and a bus servo 

axis, then establishing their connection. Two configuration methods are available: Auto-Scan and Manual Add. Auto-

Scan is only for adding bus servo axes; and local pulse axes must be added manually. 

(I) Auto-Scan 

1. Double-click EtherCAT under the Project Manager. In the dialog box, check Enable, click OK, then compile 

and download the project. (Note: The main program must not be empty). 

 
2. Ensure the PLC’s EtherCAT port is properly connected to the servo drive. Verify that the drive’s XML file 

exists in the device library. If not, add the corresponding XML file, as shown below. 

1 

2 

3 

4 

5 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 194 - 
 

 
 

3. Right-click EtherCAT, select Auto-Scan, and the Auto-Scan dialog will open, as shown below. 

 
 

4. Click “Yes”. After scanning completes, click Update to add the bus servo axis, as shown below. 

 
 

5. After scanning, right-click Axis Configuration to configure it, and link it to the scanned slaves. At this point, the 

axis association configuration is complete.  

 
 

(II) Manual Add 

1. Right-click EtherCAT -> Add Device -> Import to manually import the drive’s XML file, as shown below. 

 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 195 - 
 

 
2. Right-click EtherCAT -> Add Device, then double-click the target slave device to add, as shown below. 

 

 
 

3. After manual add, right-click Axis Configuration to configure it, and link it to the scanned slaves, as shown 

below. 

 
 

Note: 

For manually added slaves, ensure Enable under EtherCAT is checked to activate functionality. 

11.3.2 Axis Parameter Settings 
Bus Servo Axis 

Configure axis parameters based on the actual device. For this example, set the following parameters: 

⚫ Number of pulses for one resolution of motor/encoder: 8388608 

⚫ Gear ratio: 1:1 

⚫ Axis mode: Linear 

⚫ Movement of worktable in one revolution: 1 Unit 

 

 
 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 196 - 
 

11.3.3 Programming 
1. Directly call MC_Power, MC_MoveRelative, and MC_Stop instructions in the program without 

instantiation, as shown below: 

 

11.3.4 Compilation/Download 
1. After completing the project, click ① to download it. The system will first compile the project. Upon 

successful compilation, a download dialog box will appear. Click Download to proceed. A progress bar 

will display, and after completion, a prompt will ask whether to set the PLC to Run mode. Select Yes, as 

shown below: 

 

11.3.5 Online Monitoring 
1. Click the Monitor button. Assign parameters to the MC_MoveRelative instruction and set M0 and M1 to 

ON sequentially. The drive will then execute a 10-uint displacement at 300 r/min with 1s 

acceleration/deceleration time, as shown below. 

 

11.3.6 Fault Types 
Axis faults are categorized into instruction faults, axis faults, and drive faults. 

⚫ Instruction faults: Errors generated by MC motion control instructions, such as invalid parameters and PLCOpen 

state machine changes during operation. Check the fault code via the ErrorID of the faulty instruction (refer to 



EtherCAT Motion Control                                 SH100/300/SH500 PLC Programming and Application Manual  

- 197 - 
 

the Appendix). 

⚫ Axis faults: Errors reported by the axis, e.g., excessive following error. Axis fault codes can be viewed through: 

Current faults monitoring; Historical faults records; or System variable iAlmStatus. 

⚫ Drive faults: Errors from EtherCAT bus drives or local pulse output axes. To retrieve faults from the EtherCAT 

bus drive, 0x603F must be configured in the PDO mapping and linked to the axis. Drive faults can be viewed 

through: Servo Error section in the drive’s backend interface; or ServoErrorID in the MC_ReadAxisError 

instruction.



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 198 - 
 

12 High-Speed Counter 

12.1 Overview 

Counters are managed as encoder axes in AutoSoft software and engineering applications. When associated with 

an axis, they are collectively referred to as local encoder axes. The system supports 4-axis 32-bit high-speed counters 

capable of AB-phase 1/2/4× frequency multiplication, CW/CCW, pulse+direction, and single-phase counting. It also 

enables counter preset and high-speed counter position latch functions. 

12.2 Creating a Counter Axis 

The counter must first be associated with an axis before using. 

1. In the Project Manager area, right-click Axis Configuration, and select Add Axis to create a motion control axis. 

 

 
2. Double-click the newly added axis (e.g., Axis0) to open its configuration page. Under the Basic Settings 

interface, select “Local encoder axis” as the axis type and “High-speed counter” as the associated device to 

associate the axis with the counter. The axis number serves as the identifier for programmatic control of the 

corresponding counter axis. 

 

12.3 Unit Conversion for Counter Axis 

The high-speed counter uses pulse units to decode encoder signals, while counter instructions employ common 

measurement units (e.g., millimeters, degrees, or inches), referred to as user units. Unit conversion translates pulse 

counts into user units (Uint). User units can be defined as application-specific units (e.g., millimeters, revolutions) 

based on actual requirements. 

 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 199 - 
 

 
 

The parameters required for unit conversion are listed below. 

Item Function 

Pulses per motor/encoder revolution Sets the pulse count per motor/encoder revolution based on encoder 

resolution. 

Workpiece movement per revolution Defines the workpiece displacement per worktable revolution with 

transmission. 

Gear ratio numerator Sets the gear ratio on the workpiece side. 

Gear ratio denominator Sets the gear ratio on the motor side. 

 

For example, when a servo motor drives a worktable via a gear reducer and lead screw, the PLC controller 

monitors the encoder pulses (in pulse units) to determine the worktable position. The counter axis, representing the 

worktable position, uses millimeters as its unit. Thus, user units are uniformly applied in the program. The conversion 

relationship between user units (e.g., degrees) and pulses is illustrated in the figure below. 

 

 
 

In unit conversion settings, parameters must be configured according to the actual device. 

Pulses per motor/encoder revolution[DINT]*Gear ratio numerator[DINT]

Workpiece movement per revolution[REAL]*Gear ratio denominator[DINT]

Pulse *Displacement[Uint]

 
For example, if one encoder revolution corresponds to one revolution of the work axis and the user unit (Uint) 

is defined as "revolution," set the travel distance per motor/encoder revolution to 1. 

Example for a 2000-line encoder: 

Pulses per motor/encoder revolution = 2000 

Travel distance per motor/encoder revolution = 1 

When executing the HC_Counter high-speed counter instruction, the counter value will be 1 after the encoder 

completes one full revolution. 

 

12.4 Operating Mode Configuration 

12.4.1 Linear Mode 
In linear mode, the counter axis position varies between the negative and positive limit values. If the counter 

axis reaches a limit and continues to receive pulses in the same direction, the HC_Counter instruction reports an 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 200 - 
 

overflow, but the counter continues counting in the same direction. When reverse pulses are input after an overflow, 

the counter decrements and the overflow error is cleared. 

Since the high-speed counter is a 32-bit device, the rotational period converted to pulse units must fall within 

the 32-bit integer range [‑2147483648, 2147483647]. 

 

 
 

12.4.2 Rotation Mode 
In rotation mode, the counter axis position cycles within the rotational period. During incremental counting, the 

position resets to 0 upon reaching the maximum rotational period value. During decremental counting, the position 

jumps to the maximum value when decremented from 0. 

In this mode, the rotational period of the counter axis can be configured in the interface, with the period unit 

defined in user units. Since the high-speed counter is a 32-bit device, the rotational period converted to pulse units 

must fall within the 32-bit integer range [‑2147483648, 2147483647]. 

 
 

 

 

12.5 Counter Parameter Configuration 

12.5.1 Overview 
Parameter configuration primarily includes counter mode, reset, probe, preset, and comparison output functions. 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 201 - 
 

 
 

12.5.2 Counter Mode 
Local encoder axes support multiple signal counter modes: A/B phase (×1/×2/×4 multiplication), CW/CCW, 

pulse+direction, and single-phase counting. Signal sources can be selected based on the counter mode. 

 

 
 

The input ports supported for each counter mode are listed below. Different local encoder axes may share the same 

signal source input ports. 

Counter Mode X0 X1 X2 X3 X4 X5 X6 X7 

A/B Phase A Phase B Phase A Phase B Phase A Phase B Phase A Phase B Phase 

CW/CCW CW CCW CW CCW CW CCW CW CCW 

Pulse+Direction Pulse Direction Pulse Direction Pulse Direction Pulse Direction 

Single Phase Pulse Pulse Pulse Pulse Pulse Pulse Pulse Pulse 

 

Note: 

➢ For modes requiring two input signals: X0/X1, X2/X3, X4/X5, and X6/X7 are grouped as four pairs. 

➢ All four counters can freely select counter modes and signal sources, allowing mode or source reuse across 

different counters. 

 

A/B Phase Mode 

In A/B Phase Mode, the encoder generates two quadrature phase pulse signals (Phase A and Phase B) with a 90° 

phase shift. The counter increments when Phase A leads Phase B and decrements when Phase B leads Phase A. 

A/B phase pulses can operate in ×1, ×2, or ×4 multiplication modes: 

⚫ ×1 multiplication: Counts only on the rising edge of Phase A pulses, as shown in the figure below. 

 
 

⚫ ×2 multiplication: Counts on both rising and trailing edges of Phase A pulses, as shown in the figure below. 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 202 - 
 

 
⚫ ×4 multiplication: Counts on rising and trailing edges of both Phase A and Phase B pulses, as shown in the 

figure below. 

 
CW/CCW Mode 

In CW (Clock Wise) and CCW (Counter Clock Wise) modes, the encoder outputs CW pulses during forward 

rotation and CCW pulses during reverse rotation. 

 

 
 

 

When the local encoder axis operates in this counter mode, the high-speed counter increments on CW signals 

and decrements on CCW signals, as shown in the figure below. 

 

 
 

Pulse+Direction Mode 

In this mode, the high-speed counter increments on pulse signals when the direction signal is ON and decrements 

when the direction signal is OFF, as shown in the figure below. 

 

 
 

Single Phase 

In this mode, the high-speed counter increments on pulse signals. The position count increases by 1 at the rising 

edge of each input pulse. 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 203 - 
 

 

 

12.5.3 Reset Configuration 
(1) Check the “Counter reset signal enable” to use an external input (X0~X7 terminals) for encoder axis 

position reset. The trigger condition (rising/trailing edge) is configurable. 

(2) When enabled, the encoder axis position is cleared to zero via the external input signal. 

 

 
 

12.5.4 Probe Terminal 
(1) Each counter supports two external inputs to latch the current counter value for probe functionality. Check 

the “Probe0 Enable” to trigger position latching via an external input (X0~X7 terminals). 

(2) Once enabled, use the HC_TouchProbe function block to read the latched position of the counter axis. 

 

 

12.5.5 Preset Terminal 
(1) Check the “Preset Enable” to use an external input (X0~X7 terminals) for counter value preset. The trigger 

condition (rising/trailing edge) is configurable. 

(2) When enabled, use the HC_Preset function block to preset the encoder axis position via external input. 

 

 

12.5.6 Compare Output Terminal 
Enabling Compare Output allows hardware-based output activation upon comparison match without software 

intervention, ensuring high real-time performance. 

⚫ When enabled, the HC_Compare, HC_ArrayCompare, or HC_StepCompare function blocks trigger hardware-

controlled output (ON state) upon position match. Output terminals (Y0~Y7) and pulse width (time or user units) 

are configurable. 

⚫ Each local encoder axis supports one comparison output channel, configurable with input terminals and pulse 

width. 

⚫ When the unit is set to ms, the configurable time range is 1ms~6553.5ms. When the unit is set to pulses, ensure 

the value converted to pulse units falls within 1~65535. 

 
Compare Output is hardware-controlled and cannot be monitored via Y soft elements. The Y soft elements and 

comparison output share an OR-logic control over the output port. If a Y soft element keeps the output ON, the actual 

port remains ON regardless of comparison results. 

12.6 Counter Axis Instruction Applications 

12.6.1 Overview 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 204 - 
 

In AutoSoft software, configuring a counter axis combined with function block instructions enables axis position 

counting/speed measurement, position presetting, position latching, and comparison functions. 

12.6.2 Position Counting/Speed Measurement Instructions 
The HC_Counter instruction enables position counting and speed measurement for a counter axis. The counter 

axis position value varies within the range defined by the counter axis mode, with its unit specified as user units. 

The counter axis velocity reflects real-time velocity in user units/s. The minimum measurable velocity 

corresponds to one pulse per second (e.g., if one pulse equals 0.01 user units, the minimum measurable speed is 0.01 

user units/s). 

 
 

The counting direction can be adjusted using the Invert parameter. After modifying the Invert setting, re-enable 

the function block instruction to apply the change. The relationship between Invert settings and counting directions 

is shown in the following table: 

Invert A/B Phase Pulse+Direction CW/CCW Single Phase 

0 A leads B: Increment 

counting; 

B leads A: Decrement 

counting 

Direction signal low: 

Decrement counting; 

Direction signal high: 

Increment counting 

A: Increment 

counting; 

B: Decrement 

counting 

Increment 

counting 

1 A leads B: Decrement 

counting; 

B leads A: Increment 

counting 

Direction signal low: 

Increment counting; 

Direction signal high: 

Decrement counting 

A: Decrement 

counting; 

B: Increment 

counting 

Decrement 

counting 

 

12.6.3Position Preset Instruction 
The HC_Preset instruction assigns a position value to the counter axis based on preset conditions. 

The TriggerType parameter selects between rising edge trigger and external X input trigger. 

 
 

TriggerType Definition 

0 Element/variable rising edge trigger 

1 External X rising edge trigger 

 

When external X input trigger is selected, enable the preset function in counter parameter settings, select an 

input terminal (X0~X7), and set the trigger condition (rising edge). 

12.6.4Probe Instruction 
The HC_TouchProbe function block instruction latches the counter axis position value when external input 

trigger conditions are met. 

1. Each counter axis supports 2×probe. To use this feature, enable the corresponding probe function in counter 

parameter settings, select an input terminal (X0~X7), and configure the trigger condition. 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 205 - 
 

 
 

2. The ProbeID parameter specifies the probe number: 

 

ProbeID Definition 

0 Probe 1 

1 Probe 2 

3. The TriggerEdge parameter defines the trigger edge type: Rising edge triggers latch the position in the 

PosPosition output parameter; Trailing edge triggers latch the position in the NegPosition output parameter. 

 

TriggerEdge Definition 

0 External X rising edge trigger 

1 External X trailing edge trigger 

2 Both rising and trailing edges 

 

The TriggerMode parameter defines single trigger or continuous trigger modes: 

⚫ Single trigger mode: When the function block instruction's power flow is active and the external trigger 

condition is met, the counter axis position is latched once, and a Done signal is output. The probe position latches 

the axis position in real-time based on the trigger edge, unaffected by program execution. The latched position 

is updated to the instruction's output parameters when the program scan cycle processes the latch instruction. 

 
 

⚫ Continuous trigger mode: When the power flow is active and the trigger condition is met, the axis position is 

latched, and a Done signal (valid for one scan cycle) is output. After the Done signal turns OFF, subsequent 

trigger conditions will continue to latch positions and generate Done signals. During the Done signal's active 

scan cycle, new triggers are ignored. 

 
 

⚫ Dual-edge trigger mode: After both rising and trailing edges trigger latching, a Done signal is output. In single 

trigger mode, the Done signal persists until the instruction completes; in continuous trigger mode, the Done 

signal lasts one scan cycle, during which new triggers are ignored. 

 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 206 - 
 

 

12.7 Compare Instructions 

The HC_Compare, HC_StepCompare, and HC_ArrayCompare instructions enable single-position comparison, 

equidistant continuous comparison, and multi-position continuous comparison for counter axes. 

12.7.1 HC_Compare Instruction 
This instruction performs a single-position comparison for the counter axis. When the instruction's power flow 

is active, a Done signal is output once the counter axis reaches the specified comparison position. 

 
 

12.7.2 HC_StepCompare Instruction 
This instruction enables equidistant continuous position comparison for the counter axis. When the power flow 

is active, the counter axis position is compared starting from StartPosition. After a match, the comparison position 

increments/decrements by the Step interval and continues. A Done signal is output only after the last comparison 

position is reached, not after each individual match. 

When StartPosition < EndPosition: 

The comparison position increases by Step after each match. The last comparison occurs when the incremented 

position exceeds EndPosition. 

When StartPosition > EndPosition: 

The comparison position decreases by Step after each match. The last comparison occurs when the decremented 

position falls below EndPosition. 

● The output parameter NextIndex indicates the next comparison point index (i.e., the count of completed 

matches). 

 

 
 

 

12.7.3 HC_ArrayCompare Instruction 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 207 - 
 

This instruction enables multi-position continuous comparison between the counter axis and an array. When the 

power flow is active, the counter axis position is compared sequentially starting from the first array element. After a 

match, it proceeds to the next array element. A Done signal is output after the last array position is compared. 

● ArrayLength sets the array length. Once all positions defined by the array length are compared, the Done 

signal remains active, completing the multi-position comparison. 

● The output parameter NextIndex indicates the next comparison point index (i.e., the count of completed 

matches). 

 

 
 

 
 

 

12.8 High-Speed Hardware Compare Output 

The counter axis enables position comparison hardware output. When the counter axis matches the comparison 

position, the hardware circuitry directly turns the output ON with a delay of less than 1ms. 

● Configuring comparison output for the counter axis: 

In the counter axis parameter settings, check the “Compare output enable”, select an output terminal (Y0~Y3), 

and set the pulse width (time or user units) for the ON state. 

 
 

Note: 

➢ When pulse width is set in time units, the precision is 1ms, with a maximum width of 6500ms; When set in 

pulse units, the maximum width corresponds to 65535 pulses. 

 

Enabling the OutputEnable Parameter in Compare Instructions 

For HC_Compare, HC_StepCompare, and HC_ArrayCompare instructions, setting OutputEnable to 1 links the 

comparison match to hardware output. 

When a comparison match occurs, the hardware circuitry directly turns the configured output terminal (Y0~Y3) 

ON. The output reverts to OFF after the specified pulse width duration. 

 
 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 208 - 
 

  
Note: 

➢ High-speed comparison hardware output is controlled directly via hardware circuits. The output state cannot be 

monitored through Y soft elements in the program. The Y soft elements and comparison output share an OR-

logic control over the output port. If a Y soft element keeps the output ON, the actual port remains ON regardless 

of comparison results. 

 

 

12.9 Compare Interrupt 

When the counter axis matches a comparison position, it can trigger a comparison interrupt to execute an 

interrupt subprogram, with configuration steps as below: 

1. In the Project Manager area, right-click Program Blocks, and select Insert Interrupt Subprogram. 

 
 

2. Right-click the inserted interrupt subprogram (e.g., INT_01) and select Property to open the interrupt 

subprogram settings page. 

 
 

3. Click “...”, select Position comparison interrupt 1 under Interrupt Event, then click OK. Write the interrupt 

logic in INT_01. 



High-Speed Counter                                                                          SH100/300/SH500 PLC Programming and Application Manual  

- 209 - 
 

 
 

4. In the main or subprogram, call HC_Compare, HC_StepCompare, or HC_ArrayCompare instructions, and 

link the InterruptMap parameter to the comparison interrupt number. Enable EI and SM71 in the program. 

A comparison match will trigger the corresponding interrupt subprogram. 

 



Interpolation                                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 210 - 
 

13 Interpolation 

13.1 Introduction to Interpolation 

13.1.1 Overview 
Interpolation operates in a spatial Cartesian coordinate system, supporting linear interpolation, circular 

interpolation, helical interpolation, and 3D circular interpolation. The interpolation function is implemented through 

axis groups. 

⚫ Each axis group can control up to 8 motion axes, including three coordinate axes (X, Y, Z) and auxiliary axes 

(A, B, C, H, W). 

⚫ The SH series supports up to 8 axis groups. Each group can be configured as 2-axis (XY), 3-axis (XYZ), or 4-

axis (XYZ + one auxiliary axis). 

⚫ Linear and circular interpolation support buffer mode. Each axis group can buffer up to 8 curves, with 

individually configurable transition modes between curves (for buffer and transition details, refer to Interrupt + 

No Transition). 

⚫ When an axis group executes interpolation, single-axis instructions (e.g., MC_MoveAbsolute, MC_Stop) are 

prohibited if the PLCopen state machine of any axis is in the SynchronizedMotion state. Single-axis motion 

instructions (e.g., MC_MoveAbsolute, MC_MoveRelative, MC_Jog, MC_Home) can be executed only when 

the axis is in the StandStill state. 

 

 
 

Spatial Cartesian Coordinate System 

 

In the diagram, Vx, Vy, Vz represent the component velocities of the three coordinate axes, corresponding to 

the actual speeds of the servo axes. V denotes the real-time speed of the interpolated curve. α, β, and γ represent the 

angles between the velocity vector and the coordinate axes. 

 
Linear Coordinate System for Auxiliary Axes 

● During linear interpolation, the motion control axes (X, Y, Z) move along their respective coordinate axes, 

while auxiliary axes travel linearly from their starting to ending positions. 

● During circular interpolation, a plane (XY, YZ, or XZ) is selected for the circular motion. If additional axes 

are configured in the axis group, these axes move linearly from their starting to ending positions. 

 

13.1.2 Axis Group Instruction List 
The axis group control instructions are listed below. For details, refer to the SH Series PLC Instruction Manual. 

 

Instruction Name 

MC_MoveLinear Linear interpolation 



Interpolation                                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 211 - 
 

MC_MoveCircular Circular interpolation 

MC_GroupStop Stop axis group motion 

MC_GroupPause Pause axis group motion 

 

13.1.3 Configuration Interface 
In Project Manager area, right-click Axis Group Configuration>Add Group, and double-click to open its 

configuration interface. 

 
 

The axis group configuration interface includes two sections: Basic Settings and Parameter Settings. 

Basic Settings 

 
 

● Group ID: Assigns a unique identifier to the axis group. 

● Coordinate Axis: Selects coordinate axes. X and Y axes are mandatory; Z and auxiliary axes are optional. 

Axes can be shared across different axis groups. 

Parameter Settings 

 
 

● Maximum Speed: In linear interpolation mode, specifies the maximum interpolation speed for spatial linear 

motion; in circular interpolation mode, defines the maximum linear velocity for circular motion. 

● Maximum Acceleration: In linear interpolation mode, sets the maximum interpolation acceleration for spatial 

linear motion; in circular interpolation mode, defines the maximum acceleration for circular motion. 

● Stop Method: Determines the stopping method when a fault occurs in the axis group. 

13.2 Axis Group Interpolation Example 

13.2.1 Overview 
To execute interpolation instructions correctly, first create an axis group and enable the axes within the group. 

The basic workflow is shown below: 



Interpolation                                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 212 - 
 

 
Axis Group Interpolation Operation Flowchart 

Note 

➢ Even after creating an axis group, single-axis motion and control instructions can still be executed for axes 

within the group. However, single-axis motion instructions and axis group interpolation instructions are 

mutually exclusive; they cannot be executed simultaneously or interrupt each other. 

 

This section provides an example to demonstrate the basic workflow for configuring Axis_0, Axis_1, Axis_2, 

and Axis_3 into an axis group and executing interpolation actions. 

13.2.2 Creating an Axis Group 
1. In Project Manager area, right-click Axis Group Configuration>Add Group, and double-click to open its 

configuration interface. Configure coordinate axes, auxiliary axes, and set relevant parameters. 

 

 
 

13.2.3 Enabling the Axis Group 
Each individual axis in the group is enabled or disabled via the MC_Power instruction. Axis group instructions 

can be executed only when all axes in the group are enabled. 



Interpolation                                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 213 - 
 

 
 

13.2.4 Linear Interpolation 
1. The axis group’s linear interpolation is executed via the MC_MoveLinear instruction. When all axes in the 

group are in the StandStill state, triggering Execute starts the linear interpolation, transitioning all axes to 

the SynchronizedMotion state. Single-axis motion instructions (e.g., MC_MoveAbsolute, MC_Stop) are 

prohibited during this state. 

2. After completing the interpolation, all axes return to the StandStill state, allowing single-axis instructions 

to resume. 

Example 

1. This example uses absolute positioning to move the X, Y, and Z axes to position (100, 100, 100), while 

positioning the auxiliary axis to 50. 

 

13.2.5 Circular Interpolation 
The axis group’s circular interpolation is executed via the MC_MoveCircular instruction. The state transitions 

in the PLCopen state machine follow the same rules as linear interpolation. 

Example 

This example performs circular interpolation in the XY plane, while the Z axis and auxiliary axis execute 

synchronized linear motion. The circular interpolation uses via-point mode with absolute positioning, passing through 

(150, 25) and ending at (200, 0). The Z axis and auxiliary axis are positioned to 100. 

For detailed parameters of circular interpolation, please refer to the SH Series PLC Instruction Manual. 



Interpolation                                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 214 - 
 

 
 

13.2.6 Axis Group Stop 
1. The MC_GroupStop command stops the execution of interpolation curves. It interrupts the interpolation 

on the rising edge of Execute, and the CommandAborted output is activated. 

2. Triggering the interpolation command while Execute=TRUE is invalid. Execute must be set to FALSE to 

restart a new interpolation command. 

3. This command can be called only when all axes in the group are in the StandStill or SynchronizedMotion 

state. During the Execute phase, axes remain in SynchronizedMotion. 

4. MC_GroupStop stops only interpolation curves; it does not affect single-axis motion commands (e.g., 

MC_MoveAbsolute). 

Example 

In this example, the following command is called during linear or circular interpolation to halt the interpolation 

curve using deceleration stop mode with a deceleration of 1000. 

 
 

13.2.7 Axis Group Pause 
The MC_GroupPause command pauses or resumes interpolation curves. Setting Enable=TRUE pauses the 

interpolation, while Enable=FALSE resumes execution. 

MC_GroupPause pauses only interpolation curves; it does not affect single-axis motion commands (e.g., 

MC_MoveAbsolute). 

Example 

In this example, the following command is called during linear or circular interpolation to pause the interpolation 

curve with a deceleration of 5000. 



Interpolation                                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 215 - 
 

 
 

13.3 Buffer and Transition 

13.3.1 Overview 
⚫ Buffer mode defines the execution flow when multiple interpolation instructions are activated 

simultaneously. 

⚫ Transition mode specifies the method for switching between curve segments. 

⚫ Four buffering and transition combination modes are supported: 

 

No. Buffer Mode Description 

0 Break + No transition Immediately switch to the next block without transition curve. 

1 Buffer + No transition Execute the buffered block after deceleration of the first segment 

completes, no transition curve. 

2 Merge with previous 

velocity + No transition 

Move to the end of the first segment at current velocity and execute the 

second segment at the first segment's rate. 

3 Angular transition With transition curve; deceleration of the first segment overlaps with 

acceleration of the second segment. 

 

13.3.2 Interrupt + No transition 
First, execute the first interpolation instruction. If the second interpolation instruction with "Interrupt + No 

transition" buffer mode is triggered before the first linear segment completes, the second instruction will immediately 

interrupt the first one and execute the new interpolation curve. 

At the interruption point, the new curve maintains the original speed and recalculates component velocities for 

axes (e.g., X, Y) as shown in the figure below: 

 

 
 

13.3.3 Buffer + No transition 
First, execute the first interpolation instruction. If the second interpolation instruction with "Buffer + No 

transition" buffer mode is triggered before the first linear segment completes, the interpolator will continue executing 

the first instruction. 

The second instruction starts execution only after the first instruction completes and outputs a valid Done signal, 

as shown in the figure below: 



Interpolation                                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 216 - 
 

 
 

13.3.4 Merge with previous velocity + No transition 
First, execute the first interpolation instruction. If the second interpolation instruction is triggered before the first 

linear segment completes and its buffer mode is set to "Merge with previous velocity + No transition," the interpolator 

will maintain the target speed of the first instruction until the current linear segment finishes. 

The second instruction starts execution only after the first instruction completes and outputs a valid Done signal. 

At the transition point, the velocity remains unchanged, and the axis velocity components (e.g., X, Y) are reallocated, 

as shown in the figure below: 

 
 

This mode is particularly suitable for transitions between linear and circular paths where the linear segment lies 

tangent to the circular arc, ensuring continuous interpolation speed. 

 

 

13.3.5 Angular transition 
First, execute the first interpolation instruction. If the second interpolation instruction is triggered before the first 

linear segment completes and its buffer mode is set to "Additional corner transition," the interpolator initiates the 

second instruction when the first segment begins deceleration. The final component velocities of each axis are the 

sum of the velocities from both instructions, as shown in the figure below: 



Interpolation                                                                                       SH100/300/SH500 PLC Programming and Application Manual  

- 217 - 
 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 218 - 
 

14 Electronic Cam 

14.1 Introduction to Electronic Cam 

An electronic cam essentially describes the motion relationship where a slave axis follows a master axis, defined 

either by cam table data or electronic gear ratio. 

⚫ Cam tables support up to 361 key points. Electronic gear ratios maintain a fixed proportional relationship 

between master and slave axes. 

⚫ Electronic gears require only numerator/denominator ratio settings without cam table configuration. Electronic 

cams require predefined cam table data. 

⚫ Programming software supports 16 configurable cam tables, with 8 simultaneously active. Each cam table 

allows a maximum of 361 key points. 

⚫ Cam tables permit dynamic addition, deletion, or modification of key points during operation. Modified cam 

tables take effect in the next cam cycle. 

 

14.2 Software Configuration 

14.2.1 Overview 
1. In the Project Manager area, right-click "E-Cam", and select "Add Configuration" to create a new cam table 

(CAM0). 

 
 

2. Double-click "CAM0" to access its configuration interface. The cam table interface includes a graphical 

editing area (left) and a parameter point editing area (right). 

 
  



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 219 - 
 

14.2.2 Cam Table Specifications 
When creating a cam table, adhere to the following specifications: 

Item Description 

Total key points per cam table 361 

Total configurable cam tables 16 

Number of cam tables executable 

simultaneously in PLC 

16 

Cam table switching during operation Modify the cam table using the MC_CamIn instruction, 

taking effect in the next cam cycle. 

Cam data read/write Cam table data, such as phase and displacement, can be 

read via instructions. 

Key point data can be directly edited and applied using 

the MC_GenerateCamTable instruction. 

14.2.3 Cam Node Configuration 
Users can configure cam nodes in the parameter point editing area based on application requirements. Click "+" 

to add a new cam node data row for editing. Select a node row and click "×" to delete it. 

 

 
 

Table 17–1 Cam Node Parameter Descriptions 

Parameter Description 

M-Pos Master axis phase (relative mode). 

S-Pos Slave axis displacement (relative mode). 

PU-Speed Connection speed 

(auto-generated for line curves; manually set for 5th-order splines). 

Type Curve type selection 

Line: linear; Spline: 5th-order curve 

 

 

Note 

➢ The first node's M-Pos and S-Pos default to 0 and cannot be modified. 

➢ M-Pos values must be in ascending order. 

➢ The last node's M-Pos defines the master axis cycle length; no separate cycle setting is required. 

 

14.2.4 Cam Curve Configuration 
Users can configure cam curves (position, speed ratio, and acceleration ratio curves) in the graphical editing 

area based on application requirements. 

 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 220 - 
 

 
Notes 

⚫ For position curves, key points can be dragged vertically/horizontally; for speed ratio curves, key points can 

only be dragged vertically; for acceleration ratio curves, editing is disabled. 

⚫ The last key point can only be vertically dragged; horizontal dragging is disabled. To adjust its horizontal 

position, manually modify the data in the right-side toolbar. 

⚫ Hovering the mouse over any coordinate area displays precise position values. 

⚫ Right-click to insert or delete key points. 

14.2.5 Import/Export 
Individual cam tables can be exported/imported. Double-click the target electronic cam table, then select 

"Import" or "Export" to import/export the cam table in CSV format. 

 
 

14.3 Electronic Cam Operations 

14.3.1 Gear Motion 
Functional Diagram 

 

 
 

Function Description: 

 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 221 - 
 

Supported master/slave axis types for gear motion: 

● Master axis: Bus servo axis, local pulse axis, local encoder axis, bus encoder axis (currently unsupported). 

● Slave axes: Bus servo axis and local pulse axis. 

(1) Gear motion is initiated via the MC_GearIn and terminated using MC_GearOut or MC_Stop (forced stop). 

(2) After initiation, the slave axis accelerates/decelerates to match the target speed (master axis speed × gear 

ratio). Catching phase: Before reaching the target speed. InGear phase: After synchronization.  

(3) A positive gear ratio drives the Slave axis in the same direction as the Master; a negative ratio drives it in 

the opposite direction. 

Example 

Description: Configure two bus servo axes, with the second axis following the first in a 1:1 gear ratio. 

Steps: 

1. Create a project with two bus servo axes, with Axis_0 as master axis (bound to SD710 drive) and Axis_1 as 

slave axis (bound to SD710 drive). 

 
 

 

2. Use the MC_Power instruction to enable the master and slave axes. 

 

 
 

3. Use the MC_Jog instruction to control the master axis’s forward/reverse motion. 

 
 

 

4. Execute gear synchronization via the MC_GearIn instruction with a gear ratio of 1:1. 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 222 - 
 

 
 

5. Terminate the gear operation using the MC_GearOut instruction. 

 

14.3.2 Cam Motion 
Functional Diagram 

Cam motion synchronizes the slave axis with the master axis position based on a predefined cam table. 

 

 
Function Description: 

Supported master/slave axis types for cam motion: 

● Master axis: Bus servo axis, local pulse axis, local encoder axis, and virtual axis. 

● Slave axis: Bus servo axis and local pulse axis. 

Cam motion is initiated or modified (cam table switching) via the MC_CamIn instruction, and terminated using 

MC_CamOut or MC_Stop (forced stop). 

Typical cam structure is as follows: The master axis performs periodic rotational motion, while the slave axis 

executes reciprocating motion under the master axis’s control. 

 
Electronic cams emulate this structure: A master axis (bus servo, local pulse, local encoder, or remote encoder 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 223 - 
 

axis) and a slave axis (bus servo or local pulse axis) synchronize under a configured cam curve. 

14.3.3 Cam Curve 
A cam curve is defined in a 2D coordinate system where the X-axis represents the master axis phase and the Y-

axis represents the slave axis displacement. Key points are set in the system, connected by specified curves (e.g., 

linear or 5th-order splines), forming the cam curve. 

 

 

 
 

 

Cam Table 

 Phase Displacement 

Start point 0 0 

 80 30 

160 50 

240 20 

End point 360 0 

 

For detailed functionality, refer to the MC_CamIn and MC_CamOut instructions in the "Electronic Cam 

Instructions" section of the instruction manual. 

 

Example 

Axis_0 serves as the master cam axis, and Axis_1 follows Axis_0 in cam motion. 

Steps: 

1. Create a project with two bus servo axes, with Axis_0 as master axis (bound to SD710 drive) and Axis_1 

as slave axis (bound to SD710 drive). 

 
 

  

 

2. Create a cam table. 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 224 - 
 

 
 

3. Enable the master and slave axes via the MC_Power instruction. 

 
 

4. Control the master axis’s forward/reverse motion via the MC_Jog instruction. 

 
 

5. Execute cam synchronization via the MC_CamIn instruction. 

 

 
6. Terminate the cam operation using the MC_CamOut instruction. 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 225 - 
 

 
 

14.3.4 Cam Table 
(I) Cam Table Overview 

In the cam module, cam data is defined as paired values consisting of master axis phase and slave axis 

displacement. A cam table comprises multiple sets of cam data. 

Phase and displacement values in the cam table are expressed as relative quantities starting from the start point 

"0.0". 

During cam operation, slave axis displacement is calculated based on master axis phase and configured curve 

type to control slave axis motion. 

 
 

Cam data within cam tables can be modified through user programs. 

14.3.5 Cam Table Specifications 
The following specifications apply when creating cam tables: 

Table 7-1 Cam Table Specifications 

Item Description 

Total key points per cam table 361 

Total configurable cam tables 16 

Number of cam tables executable 

simultaneously in PLC 

8 

Cam table switching during operation Use MC_CamIn instruction to switch cam tables. Current cam 

operation must be terminated before reactivating cam coupling. 

Cam data read/write Directly modify cam key points in tables. Changes take effect via 

MC_GenerateCamTable and apply in the next cam cycle. 

Cam table save Parameters modified through MC_GenerateCamTable are not hold. 

Original cam table data from the project must be reloaded after power 

cycle. 

14.3.6 Create Cam Tables 
Cam table variables can only be created via the background system. Each added cam table automatically 

generates a cam table variable. CAM0~CAM16 correspond to numbers 0~16 and serve as input parameters for cam 

instructions (CamTable). 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 226 - 
 

 

14.3.7 Modify Cam Data 
Cam data can be modified through the following methods: Adjust the number of key points in the cam table. 

Changes take effect via the MC_GenerateCamTable instruction and apply in the next cam cycle. 

Original  Modified 

Key Point Master 

Position 

Slave 

Position 

Key Point Master Position Slave 

Position 

1 80 30 1 80 30 

2 160 50 2 200 70 

3 360 100 3 360 100 

 

Program Example: 

(1) Manually create a cam table structure array in the program, as shown below. 

 

 
  

(2) Execute the MC_GenerateCamTable instruction. Input the starting address of the structure array into the 

CamNode parameter, modify key point values at corresponding addresses, and set M8 to ON. The Done 

signal outputs ON upon completion, as shown in the figure below: 

 
 

14.3.8 Master Axis Phase Compensation 
This function compensates the phase of the master axis (observed from the slave axis) during operation. 

The MC_Phasing (master axis relative phase compensation) instruction enables phase compensation for 



Electronic Cam                                         SH100/300/SH500 PLC Programming and Application Manual  

- 227 - 
 

synchronization control, 

and configuration for parameters such as phase compensation amount, target velocity, acceleration, and 

deceleration. 

 

 

14.3.9 Motion Superposition 
The MC_MoveSuperImposed instruction enables motion superposition for motion-controlled axes, and 

configuration for parameters such as displacement compensation amount, target velocity, acceleration, and 

deceleration. 



Offline Simulation                                       SH100/300/SH500 PLC Programming and Application Manual  

- 228 - 
 

15 Offline Simulation 

15.1 Overview 

AutoSoft V1.12.10.3 and above versions support offline debugging. 

⚫ Users can debug program logic offline through this function. 

⚫ The offline debugging includes module configuration, communication, online modifications, and a status 

monitoring interface for real-time tracking of PLC and module I/O channel states. It also integrates with 

HMI online simulation for hardware-free debugging. 

The supported and unsupported functions are listed below. 

Supported/Unsuppo

rted 

Category Description 

 

 

 

 

Supported 

 

Program 

Main program, subprogram, FB/FC 

Timed interrupt subprogram 

Online modification 

Communication Ethernet Modbus TCP protocol 

HMI online simulation via specified ports 

Instruction Basic instructions (some are excluded; see details below)  

Extension Virtual extension module I/O, local DI/DO 

Other functions RTC clock (uses Windows system clock; PLC time setting not 

supported). 

Consistent with the PLC 

 

 

 

 

 

Unsupported 

Basic Time setting 

Entering/exiting offline debugging during compilation, download, 

or firmware upgrade 

Program Hardware/edge/comparison interrupts 

Motion control

  

Bus encoder axis 

Local pulse axis, EtherCAT bus servo axis 

Local encoder axis 

Communication Serial communication 

CANopen 

EtherCAT communication/instructions 

 Instruction High-speed I/O, control calculation, communication, positioning, 

electronic cam, EtherCAT, axis group, CANopen axis, MC axis, 

Ethernet free protocol, local high-speed counter, etc. 

  

 

 

Note 

➢ Unsupported features will remain non-functional but not interfere with offline debugging, requiring no special 

program modifications. 

 

15.2 Offline Simulation Starting 

Prerequisites: A new or existing project requiring offline debugging is opened. 

1. Click  in the toolbar to activate the Simulator, and run the PLC program, as shown below:  



Offline Simulation                                       SH100/300/SH500 PLC Programming and Application Manual  

- 229 - 
 

 
Interface Description 

No. Description 

① Operation Set PLC state to Run or Stop during offline operation. 

② Settings PLC Type: Select the PLC model for offline simulation. The I/O display quantity will match 

the selected model. 

Language: Supports Chinese or English. 

Top Most: When checked, the simulation panel remains visible over other software 

interfaces. 
③ Panel  I/O Panel: Click X (input) or Y (output) points to toggle their states. 

IP address Displays the IP address and port for the current offline simulation. 

 

Note: 

After starting offline debugging, users can: 

➢ Monitor program execution status and PLC I/O states online. 

➢ Modify or download PLC programs. 

➢ Perform online program modifications. 

 

15.3 Digital Terminals Debugging 

● Manually toggle the ON/OFF state of uncontrolled I/O point by directly clicking it. If an I/O point is already 

controlled by the program, its state follows the program logic. 

 

15.4 Simulation Debugging 

15.4.1 Overview 
SH series PLCs and VI20/VI30 can perform hardware-free simulation debugging using AutoSoft, VI20Studio3, 

or VI30Studio. PLC and HMI communicate via the TCP monitoring protocol, supporting read/write operations for 

custom variables and soft elements. 

15.4.2 PLC Side Configuration 
Internal communication eliminates PLC IP configuration for hardware-free debugging, requiring only PLC 

variables export to HMI monitoring variable table. 

1. After adding variables and compiling the user program, open the VAR_1 variable table. Right-click any area in 

the table and select Export HMI Variable. 



Offline Simulation                                       SH100/300/SH500 PLC Programming and Application Manual  

- 230 - 
 

 
 

2. Choose the export path, enter a file name, and click Save to generate a .csv file. 

3. Click “Offline Simulation”. In the pop-up dialog, click Download, as shown below. (Offline simulation IP 

address: 192.168.1.139) 

 

15.4.3 HMI Side Configuration 
For hardware-free debugging, add a PLC connection and import the variable table on the HMI side. The steps 

for VI30 are as follows: 

1. Create a new HMI project. Add a TCP/IP Parent Device 0, then click Device Manager to add a net tag, as 

shown below: 

 
 

2. Double-click TCP/IP Parent Device 0 > Basic Properties > Set the PLC’s IP address and port address (HMI 

IP does not require configuration), as shown below: 



Offline Simulation                                       SH100/300/SH500 PLC Programming and Application Manual  

- 231 - 
 

 
 

3. Double-click Net Tag, click “…” in the Import Label row, select target tag, and click Import Label to 

import them to HMI monitoring variable table (.csv file), as shown below: 

 
 

4. Configure the Input Box Properties Setting and bind tag addresses. Compile the project after completion, 

as shown below. 

 

 

15.4.4 Debug Starting 
After completing HMI and PLC program editing and importing the variable table, launch AutoSoft’s offline 

debugging and VI30’s online simulation to begin debugging, as shown below: 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 232 - 
 

16 Troubleshooting 

16.1 Hardware Indicators 

The status of SH series panel indicators are defined as follows: 

Type Mark Definition Indicator Description 

IO indicator IN/OUT IO status display Yellow-green ● ON: Input/output is active 

● OFF: Input/output is inactive 

 

 

 

 

 

Operation indicator 

PWR Normal power 

supply 

Yellow-green ● ON: Power supply is normal 

● OFF: Power supply is abnormal 

RUN Normal operation Yellow-green ● Flash: User program is running 

● OFF: User program is stopped 

ERR Operation error Red ● OFF: No serious errors 

● Flash: A serious error has 

occurred 

CAT EtherCAT 

operation 

Yellow-green ● OFF: Communication is 

unsuccessful 

● EtherCAT communication is 

successful (remains flashing after 

disconnection) 

CAN CANopen 

operation 

Yellow-green ● ON: Normal CAN communication 

● Flash: Communication is setting 

up 

EtherNET1 Ethernet indicator Yellow-green ● ON: Communication is successful 

● Flash: Communication is setting 

up 

● OFF: Communication is 

unsuccessful 

EtherNET2 

 

Ethernet indicator 

 

Yellow-green ● ON: Communication is successful 

● Flash: Communication is setting 

up 

● OFF: Communication is 

unsuccessful 

 

16.2 Software Diagnosis 

16.2.1 PLC Basic Information 
1. Click the  icon on the toolbar to enter monitoring mode. In the bottom-right corner of the interface, the 

following PLC basic information is displayed: 

 
(1) — PLC status indicator and fault indicator 

(2) — Current firmware version and program scan cycle 

Table 21-1 Description of Indicator Status 

Current Status Fault Status 

Green PLC is running Green No error 

Red PLC is stopped Red Error 

‑ ‑   

 

2. Double-click the fault indicator to access the fault diagnosis page and obtain detailed fault information. 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 233 - 
 

 
 

16.2.2 Historical Operation Faults 
History faults log error messages that occurred during PLC operation. To view history faults: 

1. Select Debug > History Fault from the menu bar to access the history fault page, as shown in the figure 

below. 

 
History faults include: Time, Error Code, Error Info, Error Description, and Error Type. 

 

2. Double-click the fault indicator in the bottom-right corner. A Current Fault dialog will pop up. Select 

History Fault to view details, as shown in the figure below: 

 

16.3 Error Code 

When programming errors occur, the background software displays error codes by category. The table below 

lists error code categories and corresponding resolutions: 

16.3.1 System Errors SD3 (0-59) 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 234 - 
 

Code Category Information Description 

10   SRAM error 

User program is stopped; error indicator on. 

Resolution: Download new system configuration 

file/Format. 

11   FLASH error 
User program is stopped; error indicator on. 

Resolution: Power off and check hardware. 

12   Communication port error 
User program is stopped; error indicator on. 

Resolution: Power off and check hardware. 

13   RTC error 
User program is stopped; error indicator on. 

Resolution: Power off and check hardware. 

14   I2C error 
User program is stopped; error indicator on. 

Resolution: Power off and check hardware. 

15   FPGA configuration error 
User program is stopped; error indicator on. 

Resolution: Power off and check hardware. 

20   Local I/O critical error 
User program is stopped; error indicator on. 

Resolution: Power off and check hardware. 

21 Faulty module ID Extension I/O critical error 
Error indicator flashes; auto-cleared when error 

resolves. 

22 Faulty module ID 
Special module critical 

error 

Error indicator flashes; auto-cleared when error 

resolves. 

23   RTC refresh error 
Error indicator flashes; auto-cleared when error 

resolves. 

24   EEPROM read/write error 
Error indicator flashes; auto-cleared when error 

resolves. 

25   Local analog input error 
Error indicator flashes; auto-cleared when error 

resolves. 

26   
System special module 

config error 

Error indicator flashes; auto-cleared when error 

resolves. 

27 Battery voltage Low battery voltage 
Error indicator flashes; auto-cleared when error 

resolves. 

28  CANOPEN operation error 
Error indicator flashes; auto-cleared when error 

resolves. 

29  Left extension config error 
Error indicator flashes; auto-cleared when error 

resolves. 

30 

0x20: Excessive 

communication 

errors 

Right extension error  



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 235 - 
 

 

0x40~0x4F: 

Module 0~15 

parameter 

transmission errors 

0x60~0x6F: 

Module 0~15 

parameter reception 

errors 

0x80~0x8F: 

Module 0~15 ID 

errors  

0xA0~0xAF: 

Module 0~15 

parameter polling 

errors 

40   User program file error 
User program is stopped; error indicator on. 

Resolution: Download new program/Format. 

41   System config file error 

User program is stopped; error indicator on. 

Resolution: Download new system configuration 

file/Format. 

42   Data block file error 
User program is stopped; error indicator on. 

Resolution: Download new data block file/Format. 

43   Retentive data loss error 

User program continues; error indicator flashes. 

Resolution: Clear data/Format/Reset and no error 

detected. 

44   Force table loss error 

User program continues; error indicator flashes. 

Resolution: Clear data/Format/Reset and no error 

detected. 

45   User info file error 

User program continues; error indicator flashes. 

Resolution: Clear data/Format/Reset and no error 

detected. 

46   Power supply error 
User program is stopped; error indicator on. 

Resolution: Restore power supply. 

 

16.3.2 Execution Errors SD20 (60~255) 
Code Category Information Description 

60  User program compilation error 
User program is stopped; error indicator 
on. 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 236 - 
 

61   User program execution timeout 
User program is stopped; error indicator 
on. 

62 
Instruction step 
number 

Illegal user program instruction 
execution 

User program is stopped; error indicator 
on. 

63 
Instruction step 
number 

Illegal operand type for instruction 
User program is stopped; error indicator 
on. 

64 
Instruction step 
number 

Illegal operand value 

User program continues; error indicator 

off, but error type code is recorded in 
SD20. 

65 
Instruction step 

number 
Operand address out of range 

66 
Instruction step 
number 

Subroutine stack overflow 

67   User interrupt request queue overflow 

68 
Instruction step 

number 
Illegal label jump or subprogram call 

69 
Instruction step 
number 

Division by zero 

70 
Instruction step 
number 

Illegal stack definition 

Occurs if stack size/element count is 

negative, 

or element count exceeds stack size 
limit. 

71   Reserved   

72 
Instruction step 
number 

Undefined user subprogram or 
interrupt subprogram 

  

73 
Instruction step 
number 

Invalid special module address   

74 
Instruction step 
number 

Special module access error   

75 
Instruction step 
number 

Immediate I/O refresh error   

76   Clock setting error   

77 
Instruction step 
number 

PLSR instruction parameter error   

78 
Instruction step 
number 

Special module BFM address out of 
bounds 

  

81 
Instruction step 
number 

DSZR instruction in abnormal state   

82 
Instruction step 
number 

CANOPEN axis control instruction 
execution error 

 

83 
Instruction step 
number 

Instruction operation occupied by 
others 

 

84 
Instruction step 
number 

TPID instruction concurrent auto-
tuning limit exceeded 

 

85 
Instruction step 
number 

Pointer accesses non-existent memory  

86 
Instruction step 
number 

Pointer access out of bounds  

87  Left extension communication error  

88 
Instruction step 
number 

User program compilation error 
User program is stopped; error indicator 
on. 

    

 

 

 

 

16.3.3 Serial Communication Errors SD50 (1000~1499) 

Code Category Information Description 

1001 
Table instruction 
number PORT0 illegal function code 

 

1002 
Table instruction 
number PORT0 illegal register address 

 

1003 
Table instruction 
number PORT0 data count error 

 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 237 - 
 

1016 
Table instruction 
number 

PORT0 communication timeout; exceeds user-defined maximum 
communication time. 

 

1017 

Table instruction 

number PORT0 received data frame error 
 

1018 
Table instruction 
number PORT0 parameter error; invalid mode or master/slave configuration. 

 

1019 
Table instruction 
number 

PORT0 station ID conflict; local station ID matches instruction-set 
ID. 

 

1020 

Table instruction 

number 

PORT0 address overflow; Received/sent data exceeds element 

storage space. 

 

1021 
Table instruction 
number PORT0 command execution failed 

 

1022 
Table instruction 
number 

PORT0 received address conflicts with requested address; stored in 
error code element 

 

1023 
Table instruction 
number 

PORT0 received function code conflicts with requested code; stored 
in error code element 

 

1024 

Table instruction 

number 

PORT0 frame error: Element start address mismatch; stored in error 

code element 

 

1025 
Table instruction 
number 

PORT0 data length/element count exceeds protocol/function code 
limits. 

 

1032 

Table instruction 

number PORT0 CRC/LRC check error 
 

1034 
Table instruction 
number PORT0 element start address error 

 

1035 
Table instruction 
number PORT0 unsupported/illegal function code 

 

1036 
Table instruction 
number PORT0 element count error 

 

1038 
Table instruction 
number PORT0 parameter modification prohibited during operation 

 

1039 
Table instruction 
number PORT0 parameter password-protected 

 

1040  Reserved    

1101 
Table instruction 
number PORT1 illegal function code 

 

1102 
Table instruction 
number PORT1 illegal register address 

 

1103 
Table instruction 
number PORT1 data count error 

 

1116 
Table instruction 
number 

PORT1 communication timeout; exceeds user-defined maximum 
communication time. 

 

1117 
Table instruction 
number PORT1 received data frame error 

 

1118 
Table instruction 
number PORT1 parameter error; invalid mode or master/slave configuration. 

 

1119 
Table instruction 
number 

PORT1 station ID conflict; local station ID matches instruction-set 
ID. 

 

1120 
Table instruction 
number 

PORT1 address overflow; Received/sent data exceeds element 
storage space. 

 

1121 
Table instruction 
number PORT1 command execution failed 

 

1122 
Table instruction 
number 

PORT1 received address conflicts with requested address; stored in 
error code element 

 

1123 
Table instruction 
number 

PORT1 received function code conflicts with requested code; stored 
in error code element 

 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 238 - 
 

1124 
Table instruction 
number 

PORT1 frame error: Element start address mismatch; stored in error 
code element 

 

1125 
Table instruction 
number 

PORT1 data length/element count exceeds protocol/function code 
limits. 

 

1132 
Table instruction 
number PORT1 CRC/LRC check error 

 

1134 
Table instruction 
number PORT1 element start address error 

 

1135 
Table instruction 
number PORT1 unsupported/illegal function code 

 

1136 
Table instruction 
number PORT1 element count error 

 

1138 
Table instruction 
number PORT1 parameter modification prohibited during operation 

 

1139 
Table instruction 
number PORT1 parameter password-protected 

 

      

1201 
Table instruction 
number PORT2 illegal function code 

 

1202 
Table instruction 
number PORT2 illegal register address 

 

1203 
Table instruction 
number PORT2 data count error 

 

1216 
Table instruction 
number 

PORT2 communication timeout; exceeds user-defined maximum 
communication time. 

 

1217 

Table instruction 

number PORT2 received data frame error 
 

1218 
Table instruction 
number PORT2 parameter error; invalid mode or master/slave configuration. 

 

1219 
Table instruction 
number 

PORT2 station ID conflict; local station ID matches instruction-set 
ID. 

 

1220 

Table instruction 

number 

PORT2 address overflow; Received/sent data exceeds element 

storage space. 

 

1221 
Table instruction 
number PORT2 command execution failed 

 

1222 
Table instruction 
number 

PORT2 received address conflicts with requested address; stored in 
error code element 

 

1223 
Table instruction 
number 

PORT2 received function code conflicts with requested code; stored 
in error code element 

 

1224 
Table instruction 
number 

PORT2 frame error: Element start address mismatch; stored in error 
code element 

 

1225 
Table instruction 
number 

PORT2 data length/element count exceeds protocol/function code 
limits. 

 

1232 
Table instruction 
number PORT2 CRC/LRC check error 

 

1234 
Table instruction 
number PORT2 element start address error 

 

1235 

Table instruction 

number PORT2 unsupported/illegal function code 

 

1236 
Table instruction 
number PORT2 element count error 

 

1238 
Table instruction 
number PORT2 parameter modification prohibited during operation 

 

1239 
Table instruction 
number PORT2 parameter password-protected 

 

 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 239 - 
 

16.3.4 Ethernet-based CAN Communication Errors SD51 (1500~1999) 

Code Category Information Description 

1501 Faulty slave IP last byte Ethernet master receive timeout  

1502 Faulty slave IP last byte Ethernet slave response error  

1503 Faulty slave IP last byte Ethernet master connection failure  

1504   Ethernet slave exceeds maximum connections  

      

1601   RAM allocation error  

1602   Invalid data or out of range  

1603   Incomplete CAN program  

1604   CANopen configuration error  

1605   CAN data download error  

1606   CAN unknown error  

1607   CAN transmit buffer overflow  

1608   CAN receive buffer overflow  

1609   CAN general error  

1610   CAN passive error  

1611   CAN bus off  

1612   CAN heartbeat error  

1613   CAN protocol error  

1614   CANPDO length error  

1615   CANRPDO timeout  

1616   CAN overload  

1617   CANPDO transmit/receive error  

1618   CANPDO transmission type error  

1619   CAN received invalid message  

1620   CAN received emergency message  

1621   CAN slave count exceeds limit  

1622   CANSDO invalid command code  

1623   CAN download error  

1624   CANSDO write data error  

1625   CAN Sync frame timing error  

1626   SDO read timeout  

1627   SDO write timeout  

1628   CAN instruction/protocol mismatch  

1629   CAN free protocol instruction exceeds limit  

1630   Axis communication error  

1631   Servo fault  

1632 
  

CAN axis control instruction: axis not 
enabled 

 

1633   CAN axis control instruction: axis busy  

1637   Forward overtravel  

1638   Reverse overtravel  

1640   Axis number out of range  

1641   CANopen not configured  

1642   CANopen monitor address setting error  



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 240 - 
 

1643   CAN receive overflow  

1644   CAN origin return error  

1645   Module error; not specified motion module  

1649 
  

SDO read/write aborted (See SD393 for 

object dictionary index) 

 

1650   Instruction count exceeds limit  

1651 - Invalid data type  

    

1800 - Socket ID error  

1801 - Socket port error  

1802 - Socket port or ID already exists  

1803 - Failed to create Socket listener  

1804 - Failed to bind Socket port  

1805 - Max. number of socket ports exceeds limit  

1806 - Socket pointer error  

1807 - Socket listener port already closed  

1808 - Socket connection port already closed  

1809 - Socket closed  

1810 User-defined socket Socket data reception error  

1811 User-defined socket Data sent via unconnected Socket  

1812 
User-defined socket 

Multiple consecutive Socket data 
transmission errors 

 

1813 - Socket data size exceeds limit  

1814 User-defined socket Host disconnected  

1815 - Ethernet initialization incomplete  

 

 

16.3.5 EtherCAT Error Codes (SD53) 

Code Category Information 

2001 Axis No. EtherCAT servo axis configured but EtherCAT task not enabled 

2002 Axis No. EtherCAT servo axis mapped to an invalid EtherCAT slave number 

2003 Axis No. Axis operation state error 

2004 Axis No. Axis position deviation alarm 

2005 Axis No. Hardware positive limit triggered 

2006 Axis No. Hardware negative limit triggered 

2007 Axis No. Software positive limit triggered 

2008 Axis No. Software negative limit triggered 

2009 Axis No. Target velocity exceeds maximum limit 

2010 Axis No. Acceleration exceeds maximum limit 

2011 Axis No. Deceleration exceeds maximum limit 

2012 Axis No. Acceleration step value exceeds maximum limit 

2013 Axis No. Torque exceeds maximum limit 

2014 Axis No. Necessary PDO not mapped for the axis 

2501 - Cam channel error (exceeds maximum cam count) 

2502 - Invalid cam table number setting 

2503 - Cam direction/tracking distance/start position mismatch 

2504 - Invalid cam point count 

2505 - Invalid activation mode 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 241 - 
 

2506 - Cam point data error 

2507 - Invalid follower count 

2508 - Follower data error 

2509 - Invalid cam axis number setting 

2510 - Cam start/end point calculation error 

2511 - Master axis phase exceeds 100 cycles 

2512 - CAM stop mode switch failed 

2513 - Axis already in coupling state (repeated) 

2514 - Master/slave scaling ratio is zero 

2515  Invalid cam table data retrieval mode 

2516  No data in cam table buffer 

2517  No data during cam table operation 

2520  Flying shear mode setting error 

2521  Flying shear data setting error 

2522  Tracking shear mode setting error 

2523  Tracking shear data setting error 

2524  Flying shear return coefficient error 

2551 - Gear axis number setting error 

2552 - Gear denominator setting error 

2553 - Gear acceleration setting error 

2554 - Gear deceleration setting error 

2555 - Gear jerk setting error 

2601 Axis No. Master axis position change exceeds limit 

2602 Axis No. Slave axis position change exceeds limit 

2603 Axis No. Slave axis not enabled 

2604 Axis No. Slave axis acceleration exceeds maximum limit 

2605 Axis No. Slave axis deceleration exceeds maximum limit 

2606 Axis No. Slave axis jerk exceeds maximum limit 

2607 Axis No. CAM mode switch failed during axis operation 

   

2700 
Axis Group 
No. Axis group count exceeds limit 

2701 
Axis Group 
No. Invalid axis group number configuration 

2702 - Axis group number does not exist or is unconfigured. 

2703 
Axis Group 
No. Axis number out of range 

2704 - Invalid axis position within group 

2705 - Axis group or axis not in stopped state 

2706 - Duplicate activation of axis group instruction 

2707 - Velocity mode setting error 

2708 - Velocity range setting error 

2709 - Acceleration range setting error 

2710 - Deceleration range setting error 

2711 - Jerk range setting error 

2712 - Velocity exceeds maximum limit 

2713 - Acceleration exceeds maximum limit 

2714 - Deceleration exceeds maximum limit 

2715 - Jerk exceeds maximum limit 

2716 - Absolute/relative mode setting error 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 242 - 
 

2717 - Buffer mode setting error 

2718 - Transition mode setting error 

2719 - Transition parameter setting error 

2720 - Axis group instruction exceeds buffer limit 

2721 - Stop instruction in progress 

2722 - Stop mode setting error 

2723 - Not all axes in group are enabled 

2724 - Circular interpolation plane setting error 

2725 - Circular interpolation mode setting error 

2726 - Circular interpolation path setting error 

2727 - Specified interpolation axis does not exist 

2728 - No interpolation axis in group 

2729 - Circular interpolation start/end/midpoint collinear. 

2730 - Radius setting error 

2731  Interpolation instruction type error 

2732  Look-ahead calculation delayed 

2733  Look-ahead buffer overflow 

2734  Reloading prohibited during look-ahead operation 

2735  Look-ahead line number error 

2736  Look-ahead auxiliary parameter error 

2737  Invalid look-ahead start line 

2738 - Look-ahead interpolation parameter error 

2800  Axis number out of range 

2801 - Instruction activated while axis is running 

2802 - Axis not enabled 

2803 - 60FF_PDO not mapped 

2804 - Pulse width out of range 

 

16.3.6 MC Axis Instruction Error Codes 

Code Category Information 

16 Instruction error Instruction interrupted 

17 Instruction error SDO parameter write error 

18 Instruction error SDO parameter read error 

256 Instruction error ECAT not initialized or slave connection failed 

257 Instruction error Configuration error 

258 Instruction error Axis not in running state 

259 Instruction error Invalid instruction 

260 Instruction error Bus servo axis alarm detected 

261 Instruction error SDO write error 

262 Instruction error SDO read error 

263 Instruction error Origin return error 

264 Instruction error Origin return timeout 

265 Instruction error Abnormal instruction execution 

266 Instruction error Axis in motion 

267 Instruction error Axis not enabled 

268 Instruction error Axis already in use 

269 Instruction error Axis stop error 

270 Instruction error Axis in stopped state 



Troubleshooting                                                                                 SH100/300/SH500 PLC Programming and Application Manual  

- 243 - 
 

271 Instruction error Non-bus servo axis or local pulse axis 

272 Instruction error PDO not configured 

273 Instruction error Reserved 

274 Instruction error Axis not running 

275 Instruction error JOG motion paused 

276 Instruction error Non-bus servo axis 

277 Instruction error PDO unsupported 

278 Instruction error Reserved 

279 Instruction error Reserved 

280 Instruction error Reserved 

281 Instruction error Negative limit input signal not used 

282 Instruction error Invalid axis type 

288 Instruction error Positive limit input signal not used 

289 Instruction error Zero-point input signal not used 

290 Instruction error Negative limit input signal out of range 

291 Instruction error Positive limit input signal out of range 

292 Instruction error Zero-point input signal out of range 

293 Instruction error Z-pulse input out of range 

294 Instruction error Counter type error 

295 Instruction error Probe enable input missing 

296 Instruction error Invalid counter number 

297 Instruction error Comparison channel occupied 

298 Instruction error Comparison exception 

299 Instruction error Comparison output not set 

300 Instruction error Illegal exit from JOG mode 

301 Instruction error Velocity too low 

302 Instruction error SDO access busy 

303 Instruction error Not in position mode 

304 Instruction error Parameter change incomplete 

305 Instruction error Data out of range 

306 Instruction error Enable input preset missing 

307 Instruction error Counter interrupt mapping error 

308 Instruction error Comparison count exceeds limit 

309 Instruction error Positive/negative direction active simultaneously in JOG mode 

310 Instruction error Circular interpolation start/end/midpoint collinear 

311 Instruction error Operation prohibited while axis is enabled 

312 Instruction error PDO input mapping error 

313 Instruction error PDO output mapping error 

314 Instruction error Invalid axis number 

315 Instruction error Positive hardware limit triggered 

316 Instruction error Negative hardware limit triggered 

317 Instruction error Positive software limit triggered 

318 Instruction error Negative software limit triggered 

319 Instruction error Position deviation alarm 

320 Instruction error No error detected during axis reset 



Firmware Upgrade                                      SH100/300/SH500 PLC Programming and Application Manual  

- 244 - 
 

17 Firmware Upgrade 

To update device functionality and meet evolving requirements, customers can upgrade the firmware via two 

methods: using AutoSoft programming software or an SD card. 

17.1 Firmware Upgrade via Host Computer 

17.1.1 MCU Firmware Upgrade 
SH series PLCs support firmware upgrades via Ethernet or USB using AutoSoft. The existing application 

program will be retained after the upgrade. 

1. Navigate to Tools > Upgrade Firmware in the menu bar to open the firmware upgrade dialog. 

 

 

 
 

2. Select the target firmware version, enter the verification code, and click Upgrade. 

 
3. When prompted to place the PLC in STOP mode, click OK to start the upgrade. The process completes 

when the "Upgrade Successful" message appears. Power cycle the PLC to finalize. 



Firmware Upgrade                                      SH100/300/SH500 PLC Programming and Application Manual  

- 245 - 
 

 
 

Notes 

➢ Firmware versions must be obtained from the manufacturer or authorized distributors. 

➢ Firmware versions must be obtained from the manufacturer or authorized distributors. 

➢ Maintain stable power supply during the upgrade. Power loss may render the PLC inoperable (indicated by a 

slowly flashing RUN indicator). If this occurs, reattempt the upgrade. If unsuccessful, return the device for 

repair. 

➢ Always power cycle the device after upgrading. For USB upgrades, disconnect the USB cable before restarting. 

 

17.1.2 FPGA Upgrade 
1. Navigate to Tools > Download FPGA in the menu bar to open the FPGA upgrade dialog. 

 
 

2. Select the target FPGA version, enter the verification code, and click Upgrade. 

 



Firmware Upgrade                                      SH100/300/SH500 PLC Programming and Application Manual  

- 246 - 
 

 
 

3. When prompted to place the PLC in STOP mode after clicking Download, click OK to start the upgrade. 

The process completes when the "Upgrade Successful" message appears. 

 

Notes 

➢ FPGA versions must be obtained from the manufacturer or authorized distributors. 

➢ Ensure the PC is connected to the SH device before upgrading. 

➢ Maintain stable power supply during the upgrade. Power loss may render the PLC inoperable (indicated by a 

slowly flashing RUN indicator). If this occurs, reattempt the FPGA upgrade. If unsuccessful, return the device 

for repair. 

➢ Always power cycle the device after upgrading. For USB upgrades, disconnect the USB cable before restarting. 

 

 

17.2 Firmware Upgrade via SD Card  

17.2.1 MCU Firmware Upgrade 
Firmware upgrades can be performed through either host computer connection or SD card. Follow these steps: 

1. Prepare an SD card formatted as FAT32, with capacity ≤32GB (as shown in the diagram below). 

 
2. Insert the SD card into a card reader and connect it to a computer via USB port. Verify the file format is 

FAT32 by Right-click>Properties. 



Firmware Upgrade                                      SH100/300/SH500 PLC Programming and Application Manual  

- 247 - 
 

 
 

3. Copy UpCfg.ini and System.bin to the SD card, insert the SD card into the PLC device and power it on. 

Monitor the upgrade status via panel indicators. (Note: Source files available from manufacturer/authorized 

agents) 

Update 

Progress 

Indicator Status 

Updating... PWR/ERR/CAT/CAN/RUN indicators ON (Note: No CAT indicator in SH300 series) 

Update 

succeeded 

After completion: 

- Only PWR remains steady on. 

- RUN flashes during system operation. Remove the SD card after successful program upgrade 

to prevent automatic re-update on reboot. 

(ERR may stay on if connected via USB/Ethernet without user program) 

Update error ERR flashes slowly + RUN displays 1 long + 2 short flashes. Host communication via 

USB/Ethernet is disabled. 

 

 

17.2.2 FPGA Upgrade 
1. Copy both UpCfg.ini and FPGA.bin to the SD card, insert the SD card into the PLC device and power it 

on. Monitor the upgrade status via panel indicators. (Note: Source files available from 

manufacturer/authorized agents) 

 

Update 

Progress 

Indicator Status 

Updating... PWR/ERR/CAT/CAN/RUN indicators ON (Note: No CAT indicator in SH300 series) 

Update 

succeeded 

After completion: 

- Only PWR remains steady on. 

- RUN flashes during system operation. Remove the SD card after successful program upgrade 

to prevent automatic re-update on reboot. 

(ERR may stay on if connected via USB/Ethernet without user program) 

Update error ERR flashes slowly + RUN displays 1 long + 2 short flashes. Host communication via 

USB/Ethernet is disabled. 

 

17.2.3 Simultaneous MCU&FPGA Upgrade 
1. Copy System.bin, FPGA.bin, and UpCfg.ini to the SD card, insert the SD card into the PLC device and power 

it on. Monitor the upgrade status via panel indicators. (Note: Source files available from 

manufacturer/authorized agents) 

Update 

Progress 

Indicator Status 

Updating... PWR/ERR/CAT/CAN/RUN indicators ON (Note: No CAT indicator in SH300 series) 

Update 

succeeded 

After completion: 

- Only PWR remains steady on. 



Firmware Upgrade                                      SH100/300/SH500 PLC Programming and Application Manual  

- 248 - 
 

- RUN flashes during system operation. Remove the SD card after successful program upgrade 

to prevent automatic re-update on reboot. 

(ERR may stay on if connected via USB/Ethernet without user program) 

Update error ERR flashes slowly + RUN displays 1 long + 2 short flashes. Host communication via 

USB/Ethernet is disabled. 

 

 

 
● Power interruption is strictly prohibited during SD card burning to avoid critical failures such as PLC 

malfunction. 

● Existing application programs remain preserved after firmware burning. 

 

 

17.3 Application Download 

17.3.1 Overview 
The application download function allows compiling a PLC project into a .cmf file, enabling users to download 

programs without accessing the original project files. This function includes: 

(1) Batch PLC project updates/upgrades using an SD card; 

(2) PLC project updates via the AutoSoft background software. 

 

17.3.2 Generate .cmf File 
To generate a .cmf file using AutoSoft, follow these steps: 

1. Open the PLC project, and navigate to Menu Bar > PLC > PLC Executable Package (A)> Generate to 

generate the file as shown below. 

 
 

2. In the Save As dialog, select the output path, name the file, and click Save to generate the .cmf file, as 

shown below. 

 

17.3.3 PLC Project Update Example via SD Card 
Example: Update the application project via SD card. (In this case, the generated file is named user.cmf. Refer 

to 17.3.2 for .cmf file generation steps.) 

1. Prepare an SD card formatted as FAT32. 

2. Open the UpCfg.ini file in Notepad, enter “user.cmf[SPACE]4”, append “//” on a new line as as the end 



Firmware Upgrade                                      SH100/300/SH500 PLC Programming and Application Manual  

- 249 - 
 

marker, and then save the modification. This is shown in the figure below: 

 
3. Copy both UpCfg.ini and user.cmf file (PLC-generated) to the SD card, as shown below. 

 
4. Safely eject the SD card, insert it into the PLC and power it on. The upgrade progress indicator will display 

the status. 

Update 

Progress 

Indicator Status 

Updating... PWR/ERR/CAT/CAN/RUN indicators ON (Note: May not activate for small projects.) 

Update 

succeeded 

After completion: 

- Only PWR remains steady on. 

- RUN flashes during system operation. 

Remove the SD card after successful program upgrade to prevent automatic re-update on 

reboot. (ERR may stay on if connected via USB/Ethernet without user program) 

Update 

error 

ERR flashes slowly + RUN displays 1 long + 2 short flashes. Host communication via 

USB/Ethernet is disabled. 

 

 

CAUTION 

➢ UpCfg.ini format requirements: 

Single-space delimiter only appears between filename and number; No extra spaces or empty lines allowed 

elsewhere.> 

➢ // marks configuration end (subsequent text ignored); Maximum file size: 500 characters. 

➢ Project upload are disabled by default during SD card program updates. 

17.3.4 PLC Project Update Example via PC 
Example: Download the generated .cmf file via AutoSoft. 

1. Establish communication between the PC and device via USB or Ethernet, as shown in the figure below: 

 



Firmware Upgrade                                      SH100/300/SH500 PLC Programming and Application Manual  

- 250 - 
 

2. In the menu bar, navigate to PLC > PLC Executable Package > Download, as shown below. 

 
 

3. Select the target .cmf file. A dialog will prompt: "Load initial values for retentive elements and variables?" 

Choose Yes to load initial values or No to skip. 

 

 
4. A progress bar displays during the download. Upon completion, a prompt asks: "Set the PLC to RUN 

mode?" Click Yes to start the PLC and finalize the upgrade. 

 
 

 



   

 
 

 

 


