

HSD 2000

Medium-voltage solid-state soft starter

USER'S MANUAL

Hope SenLan Science & Technology Holding Corp., Ltd

Please read the instructions carefully before installing, operating, and maintaining the MVAC motor soft starter!

Precautions

- This product is designed in accordance with the standard requirements of GB/T34927-2017 "Motor Soft-start Device-General Technical Specifications" and GB/T37405-2019 "Medium Voltage Soft-start Device by Thyristor Phase Control".
- Further information can be found in the technical description.

Hazards

- Failure to comply with regulations may result in accidents that endanger personal safety.
- After the MV solid-state soft starter is connected to the high-voltage power supply, there will be medium voltage inside the cabinet. Even when the motor is stopped, there is still medium voltage inside. The cabinet door is equipped with an electromagnetic lock, and the high-voltage power supply of the soft starter must be disconnected to verify that only the soft starter has been disconnected from the high-voltage power supply can the front and rear doors of the soft starter be opened. Before conducting any maintenance or repair on the high-voltage part of the soft starter, it is necessary to reliably ground the high-voltage part of the soft starter.
- The microcomputer controller and secondary control circuit of the MV solid-state soft starter are powered up by AC 220V/DC220V, so there is a risk of electric shock when in contact with the terminals of the microcomputer controller and secondary control circuit.
- The cabinet of the soft starter must be reliably grounded.

Warnings

- Failure to comply with regulations may result in accidents that endanger equipment safety.
- When connecting the reactive power compensation device for the improvement of the power factor of the motor, it may damage the thyristor valve components of the MV solid-state soft starter. If users need to connect the reactive power compensation device, please put it into operation during the bypass operation of the MV solid-state soft starter, and be sure to exit during the start or soft stop process.
- The input and output terminals of the MV solid-state soft starter must not be connected in reverse; otherwise it will cause serious safety accidents.
- When starting a MV solid-state soft starter, the thyristor valve component will generate heat, and the control system can set a starting time interval. Failure to start does not indicate equipment failure, but may indicate that the next allowable starting time has not arrived.
- The working environment of the MV solid-state soft starter is required to be indoor at normal temperature, pollution-free, and corrosion-free. If users have special requirements, please explain to the manufacturer when ordering.

Due to continuous product updates, our company reserves the right to improve product design and

modify relevant technical specifications without prior notice! Please contact us for the latest technical information if needed.

6th revision in August 2021.

Chapter I Overview	1
1. Product Introduction	1
2. Performance Indicators	1
3. Operating Principles	1
4. Control System	2
5. Structural Design	3
Chapter II Function and Model Selection	6
1. Product Model Selection	6
2. Functional Description	7
Chapter III Installation and Commissioning	9
1. Transportation, Storage and Unpacking Inspection	9
2. Cabinet Installation and Connection	9
3. Insulation Test	10
4. Low Voltage Bulb Test	10
5. Medium Voltage Wiring and Start	11
Chapter IV Menu and Settings	12
1. Main Interface Description	12
2. System Settings	14
3. Start and Stop Settings	18
4. Protection Settings	
5. Event Records	
6. Start Curve	
7. Hardware Test	27
8. Other Settings	
9. Use Instructions	
Chapter V Soft Start Controller	
1. Input and Communication	
2. Fiber Trigger	
3. Power Supply and Output	31
4. AC Acquisition	31
Chapter VI Communication Protocol	32
1. Transmission Method	
2. Parameter Settings	
3. Information Frame Format	
4. Data Point Table	
5. Communication Applications	
Chapter VII Maintenance and Troubleshooting	
1. Daily Maintenance	41
2. System Self-test	
3. Fault Analysis	41
Chapter VIII Warranty and After-sales Service	43
1. Warranty Period	

Contents

2.	Warranty Information	.43
3.	Maintenance Instructions	43

Chapter I Overview

1. Product Introduction

The HSD2000 series MV solid-state soft starter is intelligent digitally controlled, with a 32-bit microcontroller as the control core and a thyristor valve component as the execution unit, to fully automatically start and stop the motor. It is suitable for the control of squirrel cage high-voltage asynchronous motors and high-voltage synchronous motors with various loads.

The thyristor valve component in the HSD2000 series MV solid-state soft starter is composed of multiple thyristors in series and parallel. During the starting process of the motor, the voltage at the motor end is changed by controlling the trigger angle. By doing so, the soft starter can smoothly accelerate the motor according to the pre-set start curve. When the motor reaches normal speed, the bypass contactor or circuit breaker closes to complete the motor starting process. During the operation of motor, the soft starter provides monitoring, real-time measurement of motor voltage, current, and status, and comprehensive protection functions.

Category	Explanation		
AC voltage	AC3KV/6KV/10KV, ±10%-15%;		
Load Type	Three-phase MV AC synchronous motor		
Frequency 50 Hz±2Hz, or 60 Hz±2Hz			
Main circuit composition	3KV,12SCRS; 6KV,18SCRS; 10KV, 30SCRS;		
Instantaneous overvoltage protection	Voltage-sharing protector and resistance capacitance absorption network		
Cooling mode	Natural cooling		
Bypass contactor	Contactors with straight-up capacity		
Control mode	Two-wire or three-wire system		
Environmental conditions	Ambient temperature: -10-40 °C, altitude: no more than 1000 meters, relative humidity: no more than 90%.		

2. Performance Indicators

3. Operating Principles

The HSD2000 series MV solid-state soft starter adopts a continuous stepless boost method to increase the stator voltage of the motor from an initial value to full voltage progressively during startup, thereby limiting the increase of current during the boost process. During this process, the RC resistance capacitance absorption unit absorbs the peak voltage when the thyristor is turned off in reverse; the voltage-sharing resistor holds the voltage of the thyristor to ensure that the voltage of each group of thyristor in the series circuit is equal; the fiber trigger ensures electrical isolation between the controller and the high-voltage thyristor, while also ensuring that the triggering signal is not affected by electromagnetic interference.

Fig. 1.1 Principle Block Diagram of MV Soft Starter

In the three-phase voltage regulating circuit of the soft starter (as shown in Fig. 1.2), the reverse parallel thyristor is connected between the power supply and the motor. The thyristor features phase control, which means that the thyristor connects the load to the power supply at a selected time during each cycle of the power supply voltage. Changing the selected time can achieve voltage regulation.

Fig. 1.2 Three-phase AC Voltage Regulating Circuit

The thyristor connected in series in the main circuit of the motor can be regarded as a nonlinear resistor, with low impedance in the on state and high impedance in the off state. The motor adopts three-phase three-wire wiring. Taking phase A as an example, when AB forms a circuit, AC forms a circuit, or AB and AC form a circuit simultaneously, phase A will have current.

4. Control System

The HSD2000 system MV solid-state soft starter control system consists of three parts: soft start controller, pulse board, and trigger board.

Fig. 1.3 Control System Block Diagram

1) Soft start controller

The soft start controller consists of CPU board, fiber trigger board, power and relay board, sampling board and touch screen. The CPU board is the core of the controller, which can achieve photoelectric isolation input and output control, voltage and current signal acquisition, voltage zero-cross signal detection, 4-20mA output, touch screen communication, remote communication, and protection functions.

The touch screen, connected to the controller through RS232, has a bilingual menu in both Chinese and English, allowing for easy setting of various parameters

2) Pulse board

The trigger board can convert the fiber trigger signal transmitted by the soft start controller into an electrical trigger signal, and then modulate the electrical trigger signal into a high-frequency pulse current signal. The soft start controller and pulse board are controlled through fiber optic transmission, achieving electrical isolation.

3) Trigger board

When the high-frequency pulse current passes through the high-frequency pulse converter, the converter can induce electrical signal and convert it into thyristor trigger signal to trigger the thyristor. There is no direct electrical connection between the pulse board and the trigger board; the trigger board obtains energy through electromagnetic induction for electrical isolation.

5. Structural Design

The HSD2000 series MV solid-state soft starter is designed as a cabinet structure, which can be divided into split and integrated types according to product codes. The MV solid-state soft starter cabinet is modified from KYN28-12 cabinet. The cabinet is made of aluminum coated zinc plate processed by CNC machine tool using multiple bending processes and bolted together. The cabinet has a high level of protection, which can prevent the invasion of debris and pests.

1) Split type

The split-type MV solid-state soft starter HSD20001, includes components inside the cabinet such as

AC contactors, thyristor valve components, lightning arresters, current transformers, voltage transformers and soft start control systems. Its internal structure is simple, with modular design for each part, making maintenance and repair simple and convenient. The layout inside the cabinet is shown in Fig. 1.4.

Fig. 1.4 Internal Layout of Split Type (HSD20001) MV Solid-state Soft Starter Cabinet

2) Integrated type

The integrated-type MV solid-state soft starter refers to the HSD20003. The circuit breaker is of the handcart type installed in the circuit breaker room; the controller and secondary components are installed in the low-voltage room; the voltage transformer is installed in the busbar room; and the bypass contactor and current transformer are installed in the cable compartment.

The components inside the integrated solid-state soft starter cabinet include vacuum circuit breaker, AC contactor, thyristor valve component, lightning arrester, current transformer, voltage transformer, soft start control system, and microcomputer protection device, etc. The layout inside the cabinet is shown in Fig. 1.5.

Fig. 1.5 Internal Layout of Integrated (HSD20003) MV Solid-state Soft Starter Cabinet

Chapter II Function and Model Selection

1. Product Model Selection

Terra	Voltage	Rated	Cabinat dimension		•	
Туре	Level	current	Ca	binet dimens	ion	
		(A)	Height	Width	Depth	
		(A)	(mm)	(mm)	(mm)	
HSD2000-030-500	3	113	2300	1000	1500	
HSD2000-030-900	3	204	2300	1000	1500	
HSD2000-030-1250	3	283	2300	1200	1500	
HSD2000-030-1800	3	408	2300	1500	1500	
HSD2000-030-2000	3	453	2300	1500	1500	
HSD2000-030-2000 above	3	>450		Pre-order		
HSD2000-060-500	6	57	2300	1000	1500	
HSD2000-060-1000	6	113	2300	1000	1500	
HSD2000-060-1500	6	170	2300	1000	1500	
HSD2000-060-2000	6	226	2300	1000	1500	
HSD2000-060-2500	6	283	2300	1200	1500	
HSD2000-060-3000	6	340	2300	1200	1500	
HSD2000-060-3500	6	396	2300	1500	1500	
HSD2000-060-4000	6	453	2300	1500	1500	
HSD2000-060-4000 above	6	>450		Pre-order		
HSD2000-100-500	10	34	2300	1000	1500	
HSD2000-100-1000	10	68	2300	1000	1500	
HSD2000-100-1500	10	102	2300	1000	1500	
HSD2000-100-2000	10	136	2300	1000	1500	
HSD2000-100-2500	10	170	2300	1000	1500	
HSD2000-100-3000	10	204	2300	1200	1500	
HSD2000-100-3500	10	238	2300	1200	1500	
HSD2000-100-4000	10	272	2300	1200	1500	
HSD2000-100-5000	10	340	2300	1500	1500	
HSD2000-100-6000	10	408	2300	1500	1500	
HSD2000-100-6000 above	10	>450	Pre-order			

Note: 1) The rated current of the adaptive motor cannot be greater than the rated current of the soft starter.

2) When the rated current of the motor exceeds 450A, the cabinet size needs to be redesigned. Please consult the manufacturer.

3) The MV soft starter cabinet contains a bypass contactor. Please raise any other special requirements if any.

2. Functional Description

2.1. Protection function

- 1) Start timeout
- 2) Overcurrent section 1 protection
- 3) Overcurrent section 2 protection
- 4) Negative sequence current section 1
- 5) Negative sequence current section 2
- 6) Underload protection
- 7) Overvoltage protection
- 8) Undervoltage protection
- 9) Negative sequence voltage protection

2.2 Measuring functions

- 1) System frequency: display the system frequency value.
- 2) Voltage measurement: Uab, Ubc, and Uca three-phase voltages and negative sequence voltages.
- 3) Current measurement: three-phase current and negative sequence currents of motors Ia, Ib, Ic.

2.3 Communication interface

1) Communication 1: RS232 communication, connected to the touch screen, for displaying data, parameter settings, etc.

2) Communication 2: RS485 communication with backend monitoring system, standard MODBUS protocol, can be used for controller parameter reading, writing, and control.

2.4 Input and output

1) 8 input points, DC24V relay isolation, and photoelectric isolation.

2) 9 output points, contact capacity 6A/250VAC, and passive output.

2.5 Cabinet door layout

1) Touch screen for HMI operation.

2) Transfer switch and operating button: direct start/soft start, 2 transfer switches for this cabinet/remote, and 3 buttons for start, stop, and emergency stop.

3) Status indicator lights: 6 indicator lights for power, standby, start/soft stop, bypass/operation, fault,

and backup.

Note: The above are standard configurations, which can be adjusted according to user needs in special circumstances.

Chapter III Installation and Commissioning

1. Transportation, Storage and Unpacking Inspection

1.1. Lifting and transportation

1) The equipment is packed in a simple manner, and if the user has additional requirements, it will be negotiated separately.

2) During transportation, the equipment and packaging must be reliably fixed to the transportation tool with ropes or other fixtures, and must not be tilted or loose. The fixation of the equipment during transportation must be tightened according to the fixation diagram on the packing. Adequate and appropriate waterproof measures must be taken during transportation to ensure the safety of the equipment during transportation.

3) When lifting equipment, mechanical lifting is generally used. When lifting, attention must be paid to the center of gravity of the equipment. All four lifting points must be used for lifting; only two lifting points are not allowed for lifting operations. During the lifting and hoisting process, the equipment should be ensured to be stable and not tilted or shaken. If the equipment is transported with a forklift, it must be forked according to the forklift holes on the packaging body when using a forklift. When placing equipment, a flat and solid area must be selected for placement, and wooden boards must be added to the soft ground.

1.2. Storage

1) Maintain the original packaging.

2) The storage location must be a flat and solid place that can avoid exposure to sunlight, rain, and water. Placing it outdoors requires covering with rainproof and sun proof facilities.

3) Do not crowd or place with other items.

4) The storage time shall not exceed 1 year without special requirements.

1.3 Unpacking and inspection

1) Confirm that the specified model specifications are consistent with the received goods.

2) Unpack and check for any damage during transportation carefully. If there is any damage, please contact the manufacturer.

3) Check if the provided equipment product certificate, user manual, equipment factory report, drawings, spare parts, etc. are complete.

4) Check if there are any loose or disconnected mechanical components or loose wiring during transportation and handling, as loose wiring may affect product use.

5) Before starting, check if the rated voltage and current are correct.

2. Cabinet Installation and Connection

1) Determine the equipment placement space based on the on-site layout, and the surface of cable trench under the cabinet is subject to cement treatment to ensure its reliability and durability.

2) Necessary embedded parts shall be set up.

3) Before installation, clean the equipment space and ensure that the space is dry.

4) The equipment shall be hoisted in place and fixed with anchor bolts or welded to the fixed channel steel.

5) Installation and connection of primary and control cables.

3. Insulation Test

Insulation resistance test: before testing, short circuit the three-phase input and output of the bypass contactor, remove the primary wiring of the voltage transformer, short circuit both ends of the thyristor (all radiators connected together), or remove the incoming and outgoing lines of the thyristor component, and short circuit the trigger terminal on the trigger board.

Measure the insulation resistance between the circuit and ground for 1 minute with a 2500V megohimmeter. The following table can be referred to for the insulation resistance values:

Ambient	10	20	30	40
temperature (°C)				
Insulation	900	450	220	110
resistance m Ω				

Power frequency withstand voltage test: based on the insulation resistance test, remove the lightning arrester and use a power frequency withstand voltage tester to perform a withstand voltage test of AC32KV (AC25KV at 6KV) for 1 minute. If the test passes, it is considered normal.

After the test is completed, reinstall the lightning arrester and remove the short wiring.

Attention: The soft starter has undergone a voltage withstand test before leaving the factory, which may not be done on site, but external connection cables and motor voltage withstand tests need to be conducted. When conducting on-site cabinet withstand voltage tests, it is of necessity to contact the manufacturer to avoid damage to valve components caused during the withstand voltage test.

4. Low Voltage Bulb Test

Test steps are as follows:

1) Disconnect the incoming and outgoing lines of the MV soft starter;

2) Connect the three-phase three-wire AC380V to the incoming side, and connect three incandescent bulb to the outgoing side, with the neutral point of the bulb connected in a Y-shape.

3) The control power supply for the soft starter cabinet is AC220V/DC220V. After power on, the controller and touch screen should operate normally.

4) Test the resistance value of each GK terminal on the trigger board with a multimeter, which is the resistance value of the thyristor gate and cathode, approximately 15 ohms. If the measured resistance deviates by 50% from the normal value, there may be a problem with the thyristor crimping or the thyristor itself. Test the resistance values of the two K terminals on the left and right sides of the trigger board with a multimeter. This resistance value is the resistance value at both ends of the two anti-parallel thyristors, which is similar to the voltage sharing resistance value, approximately 150K. If the resistance value is severely low, either the thyristor is not installed in reverse parallel, or the thyristor has been broken down.

5) After checking the thyristor, click on the touch screen to enter hardware test page, input debug password and test input, output, and pulse output. If all tests are normal, then the soft start control system

and electrical secondary wiring are free of problems and meet the starting conditions.

6) Set the control mode to 2, test mode. It can simulate the action process of soft starter in soft start mode. If the switch action is normal, change the control mode to 1 (formal start with remote control) or 0 (formal start without remote control).

7) Switch to this cabinet and soft starter, set various parameters on the touch screen, press the start button, and the bulb gradually lights up until the bypass switch is closed to complete the start process.

8) If the debugging process in steps 1-5 is normal, then the MV solid-state soft starter is permissible for high-voltage testing.

9) Restore all wiring after the test is completed.

Attention: After each soft start, the starter will countdown to the next start. If the countdown is not reached, starting is prohibited. After the countdown time ends, the start lock will be automatically released to allow the starter to have another start.

5. Medium Voltage Wiring and Start

1) After the bulb test is completed, remove the test power supply and equipment, connect the incoming and outgoing high-voltage cables of the MV solid-state soft starter. Pay attention to the phase sequence of the wiring.

2) After the wiring is completed, the primary power supply will be powered on, and the touch screen will display the correct frequency, three-phase voltage value, and negative sequence voltage. The motor phase sequence will be positive phase sequence, and the start and stop parameters and protection parameters are set according to the operating conditions. When the fault light is on, press the stop button signal to reset the fault signal. If there is still a fault, the reset will be invalid.

3) When starting for the first time, set to jog mode for a duration of 3-5 seconds.

4) Switch the switch to the cabinet and soft start position, press the start button, and the motor will start. You can continuously observe the current value displayed on the ammeter or touch screen, the motor will automatically stop after starting for 3-5 seconds.

The jog method is available for observing the rotating direction of the motor. If the direction is correct, the next start can be carried out. If the direction is not correct, stop the high-voltage power supply and adjust the motor wiring sequence.

5) If confident, you can skip steps 3-4 and set the starting mode to voltage ramp starting or current limiting starting. Click the start button to start the motor. After the motor has reached full speed, the current begins to decrease, and then the bypass contactor will be closed to complete the start. If there is any fault during startup, the protection trip will act. If there is an abnormal fluctuation in the current during the starting process, press the stop or emergency button to stop the unit until the fault is resolved before starting.

Chapter IV Menu and Settings

The display interface of the HSD2000 series MV solid-state soft starter is equipped with a 7-inch high-performance industrial touch screen, with a 65536 color display and a high resolution of 800 x 480, making the screen display more delicate and exquisitely clear.

1. Main Interface Description

The main interface covers date, time, system frequency, three-phase voltage, negative sequence voltage, three-phase current, negative sequence current, average current, load rate, voltage current difference angle, power factor, start time, remaining time of locking, start mode, stop mode, control mode, operation status, locking status, company information, etc., as well as operating buttons for system settings, event records, start curve, hardware settings, other settings and use instructions.

		2021.09.18 11:44:06			
Unit No.: 0	Run	time O _{Day} (Hour O Minute	0 Second	
System frequency:	0.0 Hz	Starting mode:	Voltage ramp		
Uab voltage:	<mark>0.0</mark> кv	Shutdown method:	Free shutdown		
Ubc voltage:	<mark>0.0</mark> кv	Operating status:	Communication interrupted		
Uca voltage:	0.0 кv	Motor phase sequence:	Unknown phase sequence	DL	
A-phase current:	0.0 A	Trigger_angle:	0.0°		км 🚺 🚛
B-phase current:	0.0 A	Time remaining:	0 s		
C-phase current:	0.0 A	Starting time:	0.0 s	10KV	A. A.
Average current:	0.0 A	Start blocking:	0		
A pad rate	0.0 %				·
System settings	Event records	Start curve	Hardware test	Other settings	Use instructions

Fig. 4.1 Main Interface

System frequency: system power frequency, this setting supports 50HZ and 60HZ power systems.

Three-phase voltage: the effective value of Uab, Ubc and Uca three-phase line voltage;

Negative sequence voltage: the effective value of negative sequence voltage;

Angular phase difference: the phase difference between ABC three-phase voltage and current;

Power factor: real-time power factor value;

Three-phase current: the effective value of Ia, Ib and Ic three-phase current;

Average current: the average values of the three-phase currents Ia, Ib, and Ic;

Negative sequence current: the effective value of negative sequence current;

Load rate: the ratio of the average three-phase current to the rated current;

Transmission current: the real-time transmission current output value;

Trigger angle: the real-time triggered angle during the start and soft stop of soft starter; **Starting time**: the starting time for this soft start is reset to zero before the next start.

Circuit breaker: the circuit breaker status of the main circuit of soft starter, with the switch closed turning red and the open turning green. The circuit breaker in the integrated soft starter is the vacuum circuit breaker inside the cabinet.

Bypass contactor: in the soft starter, the status of the bypass contactor turns red when the switch is closed and green when the switch is opened.

Start blocking: after the soft starter is started, if the blocking time for the next start is not reached, the blocking status is red and starting is not allowed; after the locking time expires, the locking status will turn green and start is allowed.

Starting mode: the current selected starting mode for the soft starter, such as voltage ramp, current limiting ramp, sudden jump ramp, jog start, and two-stage voltage ramp;

Shutdown method: the current shutdown method selected by the soft starter, such as free shutdown and soft shutdown;

Operating status: the current operating status of the soft starter, such as communication interruption, readiness, start, operation, soft stop, fault, testing, emergency stop, and standby;

Motor phase sequence: the phase sequence currently connected to the ABC three-phase power supply of the soft starter. When there is no voltage, the unknown phase sequence is displayed. When there is a positive sequence, it is displayed as positive phase sequence, and when there is a negative sequence, it is displayed as reverse phase sequence.

Time remaining: the countdown time from the next start after the soft starter has started.

Operation: after the soft starter is started, it starts counting and the start time is reset before the next start.

Equipment number: the numbering of the soft starter on site, and the signal can be set by oneself.

When click the Chinese/English button in the upper left corner, you can switch the language between Chinese and English.

HV Solid Soft Starter(V4.0) 2021.09.18 11:44:53								
Device ID: 0	total rur	n time 0 day	0 hour 0 min (0 sec				
Line freq:	0.0 Hz	Start mode:	Voltage ramp	-				
L1-L2 Volts :	<mark>0.0</mark> кv	Stop mode:	Coast					
L2-L3 Volts :	<mark>0.0</mark> кv	Device status:	Comm timeout					
L3-L1 Volts :	<mark>0.0</mark> кv	Phase order:	Insensitive	DL				
L1 current :	0.0 A	Trigger angle:	0.0°	ŀ	км 📃 📲 –			
L2 current :	0.0 A	Counting down:	0 s		╶─────────────────			
L3 current :	0.0 A	Start time:	0.0 s	10KV	A			
Avg current:	0.0 A	Start lockout:	0					
Load ratio:	0.0 %				· - · · · ·			
System setting	Event record	Starting curve	Hardware test	Misc setting	Instructions			

Fig. 4.2 Main Interface in English

2. System Settings

Click the system settings button on the main interface to enter the system parameter setting interface.

Status description: 1) Reset button; after pressing the reset button, the system exits the debug mode and the indicator light turns green. 2) The indicator light turns red and flashes when the system is in debug mode. 3) When the button text color is yellow, indicating the page corresponding to the current button. 4) When there are setting instructions for the corresponding page number, you can access the parameter setting instructions.

		2021.06.16 13:49:41			
Parameters	Set value	Scope	Parameters	Set value	Scope
Debug password:	9999	Frequency set		50	50/60Hz
Set value set number:	1		Start interval:	15	0-60 min.
Rated current:	58	1-800A	Start delay:	1	0-158
PT transformation ratio:	100	1-200	Pulse width:	10	1-15°
CT transformation ratio:	20	1-800	Acceleration time:	500	100-2000ms
Starting mode:	0	0-1	Cutoff angle:	35	15-60°
Control mode:	1	0-2	Multi-split settings:	1	0-1
Switch configuration:	0	0-3	Phase sequence locking:	1	0-2
Setup in	nstructions Parar	neter Parameter	Start and Start and Stop 1 Stop 2	Protection Pro	otection Back

Fig. 4.3 System Parameter Settings 1

Debug password: the system debug password is 102. After entering the correct password, the displayed value is 9999. The light in the lower left corner starts to flash, entering the debug mode where parameter modifications can be made.

Note: the debug mode can only be entered in standby, ready, and fault states, and cannot be entered in other states.

After modifying the parameters, press the button in the bottom left corner to exit the debug mode and enter normal operating mode.

Set value set number: the device can set 4 sets of set values, usually using the first set of set values by default. After using either set of set values for the equipment, please do not modify the set number, as it may cause incorrect motor parameters.

Rated current: the parameter setting is ranged 1-800, and the system default value is 100. The setting value is the rated current value of the motor, and rounding is used when there are decimals in the rated current.

PT transformation ratio: the parameter setting range is 1-200, and the system default value is 100. The setting value is the ratio of the primary and secondary voltage of the voltage transformer, such as 10000V/100V=100.

CT transformation ratio: the parameter setting range is 1-800, and the system default value is 100. The setting value is the ratio of the primary and secondary voltage of the current transformer, such as 200A/5A=40.

Starting mode: the parameter setting range is 0-1, and the system default value is 0. 0 stands for button start, and 1 stands for feedback start (feedback start refers to the linkage start stop after the circuit breaker is closed and the circuit breaker position comes over, without the need to press the start stop button again).

Control mode: the parameter setting range is 0-2, and the system default value is 1. 0 stands for local control mode, 1 stands for local control+remote control, and 2 stands for analog control (analog control can only be tested in standby mode).

Switch configuration: the parameter setting is ranged 0-3, and the system default value is 0. 0 only refers to bypass contactor, 1 refers to the bypass contactor+main circuit contactor, 2 refers to the bypass contactor+main circuit isolation switch, and 3 refers to the bypass contactor+isolation contactor.

Frequency setting: the parameter setting range is 50HZ/60HZ, with the 50HZ is set to 50 and the 60HZ is set to 60. If set to other numbers, the default is the 50HZ system.

Start interval: the parameter setting range is 0-60 minutes, and the conventional setting is 15 minutes. The soft starter can only start again after an interval of 15 minutes, and users can modify it to other intervals according to actual needs.

Start delay: the parameter setting range is 0-15 seconds, and the conventional setting is 1; and the waiting time is from the start signal to the actual start of the start action.

Pulse width: the parameter setting range is 0-15, and the system default value is 10 °. 1 ° represents the cycle time t/360 °. In a 50HZ system, 1 °=55.5us, and in a 60HZ system, 1 °=46.3us.

Acceleration time: the parameter setting range is 100-2000ms, usually it is set to 500ms. After the motor starts at full speed, the motor current begins to decrease. At this point, the motor terminal voltage is not at full voltage. At this point, it is necessary to quickly increase the voltage to full voltage and bypass it to avoid motor oscillation when the motor is not bypassed at full speed.

Cutoff angle: the parameter setting range is 15-60 °, usually it is set to 35 °. The cutoff angle is the minimum angle that can be reached by the trigger angle during the soft start process.

Multi-split settings: the parameter setting range is 0-1, and the system default value is 1. 0 represents multi-split settings, and 1 represents one-for-one setting.

Phase sequence locking: the parameter setting range is 0-2, usually it is set to 1. 0 indicates no locking, 1 indicates positive sequence locking, and an alarm is triggered when the system detects reverse sequence locking. 2 indicates reverse sequence locking, and an alarm is triggered when the system detects positive sequence locking.

	System parameter settings 2								21.06.16 :53:15				
Parameters	Set valu	ie	Scope	Para	Parameters		e	5	Scope				
Correspondence address:	1	1-6	1-63 Direct		Direct start time:		Direct start time:		Direct start time:			1-15	S
Baud rate:	1	1-8	1-5 Uab cor		Uab correction factor:		Uab correction factor:		2				
Synchronous motor coefficient:	100) 100	0-300	Ubc correction factor:		4352	2						
Shutdown signal negation:	0	0-1	0-1		Uca correction factor:		2						
Fault signal negation:	0	0-1		Ia correction factor:		163							
4-20mA output:	1	0-1	0-1 Ib correction factor:		correction factor: 163								
4-20mA offset:	+64	0 ±1	000	Ic correction factor:		163							
4-20mA coefficient:	100	0 200	200-5000		Input fault:	1		0-1					
Setup instructions		Parameter 1	Parameter 2	Start and Stop 1	Start and Stop 2	Protection 1	Prote	ection 2	Back				

Fig. 4.4 System Parameter Settings 2

Communication address: the parameter setting range is 1-63, and the system default value is 1. RS485 address is used for backend communication.

Baud rate: the parameter setting range is 1-5, and the system default value is 1. 1 represents 9600; 2

represents 19200; 3 represents 38400; 4 represents 57600 and 5 represents 115200.

Synchronous motor coefficient: the parameter setting range is 100-300, and the system default value is 100. When the synchronous motor starts asynchronously without excitation, the current is relatively high and does not meet the bypass conditions. By setting the synchronous electric coefficient, the synchronous motor meets the bypass conditions.

The synchronous motor coefficient in asynchronous motors is set to 100.

The synchronous click coefficient in synchronous motors is set to 150-200.

Signal negation: the parameter setting range is 0-1, and the system default value is 1. 0 stands for not negated, and 1 stands for negated. Some equipment shutdown signals and fault signals are inverted signals, which need to be negated before use.

4-20mA **output**: the parameter setting range is 0-1, and the system default value is 1. 0 indicates that the output is not enabled, and 1 indicates that the output is enabled.

4-20mA offset: the parameter setting range is \pm 1000, and the system default value is+640. This parameter is used for correcting the fixed deviation value in 4-20mA.

4-20mA **coefficient**: the parameter setting range is 200-5000, and the system default value is 1000. This parameter is used for correcting fixed linear deviation in 4-20mA.

Direct start time: the parameter setting range is 1-15S, and the system default value is 10S. When the motor is for a direct start, it skips the soft start process, causing potential malfunction of the overcurrent section 1 protection, overcurrent section 2 protection, negative sequence current section 1 protection and negative sequence current section 2 protection. After setting the direct start time, during the direct start time, the protection values of overcurrent section 1 and negative sequence current section 1 increase, and the overcurrent section 2 and negative sequence current section 2 protection 2 protection 2 protection functions are locked.

Voltage correction coefficient: the voltage coefficient of the soft start controller has been calibrated at the factory. It is generally not allowed to have the voltage coefficient modified.

Current correction coefficient: the current coefficient of the soft start controller has been calibrated at the factory. It is generally not allowed to have the current coefficient modified.

When modifying the voltage correction coefficient and current correction coefficient, it is necessary to enter the protection password before making the modification. If it is necessary to modify the coefficient, please contact the manufacturer to provide the password. The consequences caused by modifying the coefficient shall be borne by the user. **Input fault**: the parameter setting range is 0-1, and the system default value is 1. 0 represents invalid, and 1 represents valid. When there are no special requirements, the input fault must be set to 1.

3. Start and Stop Settings

Fig. 4-5 Start Parameter Settings 1

Starting mode: 0 represents voltage ramp, 1 represents current limiting, 2 represents step, 3 represents jog, and 4 represents two-stage voltage ramping.

3.1 Voltage ramping start

When starting by voltage ramping, the voltage rises at a set ramp starting from the initial voltage. When the motor speed reaches full speed, the current begins to decrease. At this point, the soft starter will quickly step up to full voltage and then bypass.

The voltage ramping includes two parameters: initial voltage and ramp time;

Initial voltage: the parameter setting range is 30-80%, and the system default value is 30, which is the percentage of system voltage;

Ramp time: the parameter setting range is 5-60S, and the system default value is 30. The ramp time is the time from the initial voltage to the full voltage under ideal conditions.

Regarding the actual starting time of the motor, if the initial voltage is set to 30%, the ramp time is 35s. The slope of voltage ramping is $(100\% - 30\%) \div 35=2\%/S$, which means that the voltage increases by 2% per second. If a certain motor can be started at 70% voltage, the actual starting time is $(70\% - 30\%) \div 2\%=20S$. For general motors, the actual starting time is much shorter than the ramp time before the full voltage motor has been started, and the starting time can be automatically adjusted according to the load.

The left figure t1-t2 in Fig. 4.6 shows the fast step-up section, with its time corresponding to the

acceleration time parameter.

The right figure t1-t2 in Fig. 4.6 shows the difference in starting time under different ramp time settings. Under the same initial voltage, the longer the ramp time setting, the longer the starting time, but the smaller the maximum starting current.

Fig. 4.6 Voltage for Ramping Start and Current Curve

3.2. Current-limited start

During current-limited start, the initial stage starts in a voltage ramp manner. When the current reaches the set current limiting multiple, the current enters the regulating stage and remains at the current limiting value. When the motor speed reaches full speed, the current begins to decrease. At this point, the soft starter will quickly step up to full voltage and then bypass.

Current-limited start includes two parameters: current limiting multiple and adjustment coefficient.

Current limiting multiple: the parameter setting range is 150-400%, the default setting is 350%, percentage of motor rated current;

Adjustment coefficient: the parameter setting range is 1-100, with a default setting of 10. After the starting current reaches the limit value, the PI adjustment is used for maintaining the current near the limit value. The adjustment coefficient is the amplitude of current regulation. If the value is set too high, the sensitivity increases, but with an excessive large current regulation amplitude; if the value is set too low, the sensitivity decreases, and the fluctuation of current regulation amplitude will be too small. Generally, it is recommended to set it to 5-10.

The 0-t1 section in the left figure of Fig. 4.7 represents the voltage ramp starting time period, and the t1-t2 section represents the current regulation section.

The t1-t2 section in the right figure of Fig. 4.7 shows the difference in starting time under different current limiting multiples. The smaller the current limiting value, the longer the starting time.

Fig. 4.7 Current Curve during Current-limited Start

3.3. Step start

The step start is used in situations with high initial static friction. Initially, step voltage is applied for a period of time to allow the motor to rotate and then start according to the voltage ramp.

Fig. 4.8 Step Start Voltage and Current Curve

The ramp start includes two parameters: the step voltage and duration;

Step voltage: the parameter setting range is 50-80%, the default setting is 60, the percentage of rated voltage;

Duration: the parameter setting range is 300-5000ms, with a default setting of 1000.

As shown in Fig. 4.8, during the 0-t1 time period, a higher voltage is applied to generate a larger torque, allowing the motor to rotate, but accompanied by a larger impulse current. During the t1-t3 time period, there is a voltage ramp starting process. When the motor reaches full speed, the current begins to decrease. At this time, the soft starter quickly steps up to full voltage and then bypasses. The t2-t3 time period is a period for a rapid step-up.

3.4. Jog start

The jog start adopts a voltage ramp method for starting, but the duration is relatively short. The main purpose is to allow the motor to start for a few seconds and observe the rotating direction of the motor. This starting mode is only applicable for initial debugging. **Duration**: the parameter setting range is 1-10s, with a default setting of 5, indicating the continuous starting time of the motor;

The jog start is a soft start under voltage ramp mode, not a full voltage start.

3.5. Two-stage voltage ramp start

The two-stage voltage ramp start is a starting process that divides the voltage ramp into two different slopes. The voltage rises at a set ramp starting from the initial voltage. When the motor speed reaches full speed, the current begins to decrease. At this point, the soft starter will quickly step up to full voltage and then bypass.

Two-stage voltage: the parameter setting range is 10-80%, with a default setting of 50. The two-stage voltage must be higher than the initial voltage;

Start and stop parameter settings 2 2021.06.16 15:10:52 15:10:52								
Para	ameters	Set	value		Scope	;		
Two-stage voltage ramp	Two-stage voltage:		50	10-80%				
			15	5-608				
Shutdown method			1	0: Free shutdown, 1: Soft shutdown				
	Cutoff voltage:		50	30-70%				
Soft stop setting	Soft stop time:		10	0 ₅₋₃₀₈				
	Parameter 1	Parameter 2	Start and Stop 1	d Start and Stop 2	Protection 1	Protection 2	Back	

Two-stage time: the parameter setting range is 5-60S, with a default setting of 15.

Fig. 4.9 Start Parameter Settings 2

Two-stage ramp calculation, assuming the initial voltage is set to 30% and the ramp time is 20 seconds. The two-stage voltage is set to 50% and the ramp time is 20s. The one-stage voltage ramp is $(50\% -30\%) \div 20=1\%$ /S, and the two-stage voltage ramp is $(100\% -50\%) \div 20=2.5\%$ /S. The ramp of two-stage voltage is much faster than that of the one-stage voltage, so we can use parameter settings to make the motor running fast at the beginning and slow later or slow at the beginning and fast later during the startup process.

Fig. 4.10 Starting Voltage and Current Curve of Two-stage Voltage Ramp

3.6 Shutdown method

Shutdown method: the parameter setting range is 0-1, and the system default value is 0. 0 represents free shutdown, and 1 represents soft shutdown.

The free shutdown refers to stopping the equipment by directly disconnecting the switch.

The soft shutdown refers to the gradual reduction of motor terminal voltage through thyristor control during shutdown, thereby providing a decreasing output torque during the shutdown process. By doing so, it can prolong the downtime and reduce the mechanical impact during loaded shutdown.

Among pump loads, when stopping directly, the upper water inside the pump will fall freely, and the backflow water will generate strong vibration waves, causing damage to pipelines, valves, and other related equipment. By implementing soft shutdown, the water will not generate vibration waves during the shutdown process, and water hammering will basically disappear.

Note: The soft shutdown is suitable for water pump loads with a certain elevation. Please use the soft shutdown function with caution in other situations.

Cutoff voltage: the parameter setting range is 30-70%, and it is recommended to set it to 50 as a percentage of the rated voltage;

Soft shutdown time: the parameter setting range is 5-30S, and it is recommended to set it to 10. The time from soft shutdown output to soft stop should not be set too long.

4. Protection Settings

	Protection p	Protection parameter settings 1					
Parameters	Name	Set value	Pro	tective	Scop	be in the second s	
Start timeout	Setting value:	50	cast	cast/car Cast			
Overcurrent section 1	Setting value:	450	1	Cast	300-500)%	
Overcurrent section 2	Setting value:	150	1	Cast	80-300%	5	
	Delay set value:	1			0-60S		
Negative sequence		50	1_	Cast	5-80%		
current section 1	Delay set value:	1			0-60S		
Negative sequence	Setting value:	15	1	Cast	0-80%		
current section 2	Delay set value:	10					
	Parameter Paran	neter Start and 2 Stop 1	Start and Stop 2	Protection 1	Protection 2	Back	

Fig. 4.11 Protection Parameter Settings 1

Start timeout: the parameter setting range is 20-60S, and it is recommended to set it to 50. The protective board is effectively put into operation. When the motor start time exceeds the set start time, the protection trips and sends a signal.

If the motor fails to start within the specified time, the soft starter will report a failure shutdown. Under normal load, the starting time of the motor is much shorter than the start timeout protection time. However, during current-limited start, if the current limiting value is too small, it will lead to insufficient output torque of the motor and delay in reaching full speed, which will trigger the start timeout protection action.

Overcurrent section 1: the parameter setting range is 300% -500%, and it is recommended to set it to 450. The protective board is effectively put into operation, and the overcurrent section 1 protection is effective in standby, ready, startup, operation, and soft stop. If any phase of the three-phase current exceeds the set value, there is no delay protection trip and a signal will be sent.

During soft start, overcurrent section 1 during the starting process is the setting value. When starting directly, the set value of overcurrent section 1 increases to twice the setting value during the starting process. After the start time, the set value of overcurrent section 1 is restored to its original value.

Overcurrent section 2: the parameter setting range is 80% -300%, with a default setting of 120. The protective board is effective when put into operation, and the overcurrent section 2 protection is effective when in standby, ready, and running. If any phase of the three-phase current exceeds the set value, the delay protection trips and sends a signal.

Delay set value: the parameter setting range is 0-60S, and it is recommended to set it to 3. If any phase of the three-phase current exceeds the set value, the delay protection trips and sends a signal. During the delay time, the current value decreases and the protection is released.

Negative sequence current section 1: the parameter setting range is 5% -80%, and it is recommended to set it to 50. The protective board is effective when put into operation, and the negative sequence current section 1 protection is effective when in standby, ready, start, running and soft stop. When the three-phase current is in reverse phase sequence, the incoming and outgoing lines of a certain phase or two phases are reversed, and the three-phase current is unbalanced, negative sequence current will be generated, and the negative sequence current will also increase with the increase of the three-phase current. The negative sequence current section 1 is commonly used as a protection in case of reverse phase sequence, reverse current incoming and outgoing lines, and phase loss. If the negative sequence current value exceeds the protection value, the delay protection trips and sends a signal.

During soft start, soft stop, or direct start, the set value of negative sequence current section 1 increases to four times the setting value. During the operation phase, the value of negative sequence current section 1 is restored to its original value.

Delay set value: the parameter setting range is 0-60S, and it is recommended to set it to 1. If the negative sequence current value exceeds the protection value, the delay protection trips and sends a signal. Within the delay time, the negative sequence current value decreases and the protection is released.

Negative sequence current section 2: the parameter setting range is 0-80%, the default setting is 15. The protective board is effective when put into operation, and the negative sequence current protection of section 2 is effective when in standby, ready, and running. Negative sequence current section 2 is commonly used as protection when three-phase current is unbalanced. If the negative sequence current value exceeds the protection value, the delay protection trips and sends a signal.

During soft start, soft stop, or direct start, the negative sequence overcurrent section 2 protection function is blocked, and the protection is activated during operation.

Delay set value: the parameter setting range is 0-60S, and it is recommended to set it to 5. If the negative sequence current value exceeds the protection value, the delay protection trips and sends a signal. Within the delay time, the negative sequence current value decreases and the protection is released.

	Protectio	Protection parameter settings 2					
Parameters	Name		Set value	Prot	tective pard	Scope	
	Setting value	:	10	cast	^{/canc} Cancel	0-100%	6
Load loss protection	Delay set value	:	3			0-608	
Overvoltage			120	1	Cast	100-20	0%
protection	Delay set value:		3			0-605	
Undervoltage	Setting value:	:	70	1	Cast	30-100	8
protection	Delay set value:	sj.	1			0-608	
	Setting value:	i l	10	1	Cast	0-120%	
Negative Sequence voltage	Delay set value:		3			0-605	
	Parameter Pa	rameter 2	Start and Stop 1	Start and Stop 2	Protection 1	Protection 2	Back

Fig. 4.12 Protection Parameter Settings 2

Load loss protection: the parameter setting range is 0-100%, with a default setting of 10. It is a type of protection that effectively applies the protective board and is lower than the normal load, commonly used for belt conveyor closure. During the operation of the motor, if the average three-phase current value is less than the set current value, the delay protection trips and sends a signal.

Delay set value: the parameter setting range is 0-60S, and it is recommended to set it to 3. If the current value is lower than the protection value, the delay protection trips and sends a signal. Within the delay time, the current value increases and the protection is released.

Overvoltage protection: the parameter setting range is 100-200%, with a default setting of 120. The protective board is effective when put into operation, and the overvoltage protection is effective when in standby, ready, start, running, and soft stop. If any phase of the three-phase voltage exceeds the set value, the delay protection trips and sends a signal.

Delay set value: the parameter setting range is 0-60S, with a default setting of 3. If the voltage exceeds the protection value, the delay protection trips and sends a signal. Within the delay time, the voltage drops and the protection is released.

Undervoltage protection: the parameter setting range is 30-100%, with a default setting of 70. The protective board is effective when put into operation, and the overvoltage protection is effective during start, running, and soft stop. If any phase of the three-phase voltage is lower than the set value, the delay protection trips and sends a signal.

Delay set value: the parameter setting range is 0-60S, with a default setting of 3. If the voltage is lower than the protection value, the delay protection trips and sends a signal. Within the delay time, the voltage rises and the protection is released.

Negative sequence voltage protection: the parameter setting range is 0-120%, with a default setting of 10. The protective board is effectively put into operation, and the three-phase voltage is in reverse phase sequence. When there is a phase loss or imbalanced three-phase voltage, a negative sequence voltage will be generated. The negative sequence voltage protection is effective during standby, ready, start, running, and soft stop. If the negative sequence voltage exceeds the set value, the delay protection trips and sends a signal.

Delay set value: the parameter setting range is 0-60S, with a default setting of 3. If the negative sequence voltage exceeds the protection value, the delay protection trips and sends a signal. Within the delay time, the negative sequence voltage drops and the protection is released.

5. Event Records

Event record query					2021.06.16 16:41:04
No.	Date	Triggering time	Reset time	Fault <u>k</u> message	
Rese	et				Back

Fig. 4.13 Event Record Query

Click the **Event Records** button on the main interface to enter the fault status query interface. The fault setting interface is shown in Fig. 4.13.

Each fault message includes: serial number, date, fault time, reset time, and fault information; when there are many fault records, you can browse the history through the green navigation bar on the right and the up and down triangle buttons.

Reset: after a fault occurs, you can click the reset button to reset the fault.

6. Start Curve

Click the **Start Curve** button on the main interface to enter the start curve page. The start curve records the average current within 50 seconds after starting, and automatically stops after 50 seconds. Before the next start, the previous current record data will be cleared, and then the current start current will be recorded.

Fig. 4.14 Start Curve

7. Hardware Test

Click the **Hardware Test** button on the main interface to enter the input/output test page. When conducting input and output tests, password is required to enter the debug mode. When in debug mode, the debug status light will flash.

Perform input and output tests in standby and ready modes.

Fig. 4.15 Input and Output Tests

Input test: apply an input signal externally or on a terminal, the corresponding input status changes from green to red.

Output test: click the corresponding output button, the corresponding output status changes from green to red, and the external relay acts. Click the corresponding output button again to reset the status. The corresponding output status changes from red to green, and the external relay is reset.

Pulse test: before the action pulse test, first click on the "2" button to supply power to the pulse trigger. Click the A-phase pulse trigger button firstly, the A-phase pulse status changes from green to red, corresponding to the indicator light on the A-phase trigger board. Click the A-phase pulse trigger button again, and the A-phase pulse status will reset. The corresponding output status will change from red to green, and the corresponding indicator light on the A-phase trigger board will be off. Test the B-phase and C- phase pulses using the same method.

After completing the pulse test, click the corresponding output 2 button again to reset the status.

After all input and output tests are completed, click the reset button to exit the debug mode.

Note: The coefficient calibration is used for voltage and current coefficient calibration at the factory and will not provide users with any operation.

8. Other Settings

Click on the **Other Settings** button on the main interface to enter the version information page.

Firmware version: the internal CPU program version number of the controller.

Operating voltage: the input operating voltage supported by the controller.

PT/CT configuration: the corresponding PT/CT secondary parameters of the controller have two working modes: PT: 100V, CT: 5A, and PT: 100V, CT: 1A.

Product serial number: composed of year, month, day, and serial number.

Version information						20 11	21.09.18 :47:09
	Firmware version:		ххх	X_V4.0_	105		
	Operating voltage:		AC/DC220V,AC/DC110V				
	PT/CT	PT/CT configuration:		PT:100V,CT:5A			
	Product serial number:			0 0	0		
Year	Month	Day	Hour	Minu	Secon	Week	
2021	9	18	11	47	10	6	
Buzzer:	1	(0 is for off	, 1 is for	on)			
Language	In _Chinese	Click to sw langu	vitch the age				
							Back

Fig. 4.16 Version Information

Time setting: when the touch screen time needs to be calibrated, it can be modified by setting the time.

Buzzer: 0 is for off, 1 is for on. When the buzzer is turned on, there is a prompt sound when touching, and an alarm signal will be accompanied with a prompt sound.

Language settings: the touch screen is provided with bilingual language in both Chinese and English.

When selecting Chinese, the Chinese interface is displayed, and when selecting English, the English interface is displayed.

9. Use Instructions

Click the Use Instructions button on the main interface to enter the Use Instructions page.

The Use Instructions covers:

Start/stop parameter description 2) Protection parameter description 3) Startup operation process 4)
Debugging and maintenance instructions

	Use instructions		Ó	021.06.17 9:49:33		
I. Description of Start/Stop Par 1. Starting mode, 0: voltage ran ramp start. Voltage ramp	a <mark>meters</mark> ap; 1: Current-limited start; 2: Step	start; 3: Jog start; 4	4: Two-stage vol	tage		
1. For the initial voltage, the initial voltage value at startup, is recommended to be set at 30%. 2. Ramp time, the time required to step up from the initial voltage to 100% Ue in an ideal state, and complete the motor's soft start before reaching full voltage. The actual starting time is related to the load, and it is recommended to set the ramp time to 30 seconds.						
1. The current limiting multiple maintained until the starting is is 350%.	refers to the maximum current limi completed after the current reaches	t during the startin the limit value. The	g process, which recommended s	is setting		
2. Current limiting coefficient: a to be adjusted with the current recommended setting is 5-10.	fter the current rises to the limit val limiting coefficient to reduce the cur	lue, the current var rent fluctuation am	iation amplitude plitude. The	e needs		
Step start	as of starting star voltage is applied	to overeeme the fu	ational tangua a	ourod		
by motor rotation. After the step recommended setting value of 7 2. The duration of step voltage i	b is completed, the motor will start in 0%. s recommended to be 2000ms.	n a voltage ramp ma	anner, with a	auseu		
	Page 1	Last page	Next page	Back		

Fig. 4.17 Use Instructions Page

Chapter V Soft Start Controller

The soft start controller is a domestically advanced controller developed by our company specifically for the HSD2000 series of MV solid-state soft starter, featuring advanced technology, good universality and strong expansibility.

Fig. 5.1 Soft Start Controller Terminal Diagram

The description of soft start controller terminal is as follows:

1. Input and Communication

It is for the input of external control signals, the input terminal is B1-B8.

B1: Start signal, soft start starts after input, jogging input signal.

B2: Stop, soft stop, or reset signal. When the starter is set to free shutdown, the shutdown input will result in free shutdown; when the soft start controller is set to soft stop, the shutdown input will trigger a soft stop; when the starter is in a fault state, the shutdown switch has a fault reset function.

B3: External fault signal. After the external fault is inputted to the controller, it will directly report failure shutdown.

B4: Bypass input signal to detect the position of the bypass contactor.

B5: Circuit breaker input signal to detect the position of the circuit breaker.

B6: Input signal of 2 # contactor to detect its position if there are additional contactors.

B7: Emergency stop/multi-split, when the device is set to single machine mode, it is an emergency stop input signal.

B8: Direct start/multi-split, when the device is set to single machine mode, it is a direct start input signal.

When the device is set to multi-machine mode, B7/B8 together form the unit selection for multi-level mode.

When B7=0 and B8=0, select unit 1#, and the corresponding set number is 1;

When B7=1 and B8=0, select unit 2#, and the corresponding set number is 2;

When B7=0 and B8=1, select unit 3#, and the corresponding set number is 3;

When B7=1 and B8=1, select unit 4#, and the corresponding set number is 4;

B9: Input the common terminal and connect it to 24V-.

B10-B12: RS232RX/232TX/GND, communication connection between controller and touch screen.

B13-B14: RS485A/RS485B, the controller is connected to the backend communication.

B15-B16: 4-20mA output terminal, no need for positive or negative identification.

2. Fiber Trigger

- C1: TXA, phase-A triggers control signal.
- C2: TXB, phase-B triggers control signal.
- C3: TXC, phase-C triggers control signal.

3. Power Supply and Output

E1: AC220V/DC220V, L_{\circ}

E2: AC220V/DC220V, N_{\circ}

E3: Standby.

- E4: Ready signal, output when ready.
- E5: Start/soft stop, output during the start or soft stop process.
- E6: Bypass/Run, output in running state.
- E7: Fault, output when a fault occurs.
- E8: Output when circuit breaker opens.
- E9: Output when the bypass contactor is closed, output when the bypass is closed.

E10: Bypass contactor electric opening, normally closed output point, normally close changes to normally open when bypass contactor opens.

E11: Output when bypass contactor opens.

E12: Output when contactor 2 # is closed, output when contactor 2 # is closed.

E13: 2# contactor electric opening, normally closed output point, normally close changes to normally open when 2# contactor opens.

E14: Output when 2# contactor opens.

E15: Output common point, 24V-.

E16: Output common point, 24V-.

4. AC Acquisition

F1: Ua, voltage signal of Ua on the secondary side of the voltage transformer, used for voltage measurement and synchronous detection.

F2: Ub, voltage signal of Ub on the secondary side of the voltage transformer, used for voltage measurement and synchronous detection.

F3: Uc, voltage signal of Uc on the secondary side of the voltage transformer, used for synchronous detection.

F4: Un, voltage signal of Un on the secondary side of the voltage transformer, which can be disconnected during VV connection.

G1-G2: IA-IA', current signal of Ia on the secondary side of the current transformer, used for A-phase current measurement.

G3-G4: IB-IB', current signal of Ib on the secondary side of the current transformer, used for B-phase current measurement.

G5-G6: IC-IC', current signal of Ic on the secondary side of the current transformer, used for C-phase current measurement.

G7-G12: Standby

Chapter VI Communication Protocol

To meet the diverse communication needs of users, the HSD2000 series MV solid-state soft starter provides RS485 communication interface and backend communication function.

The standard MODBUS protocol is used for backend communication. The MODBUS protocol provides detailed definitions of verification codes, data sequences, and other necessary contents for specific data exchange. The MODBUS protocol features master-slave response connection (half-duplex) on a communication line. When the computer addresses a unique terminal device number, the terminal device will send a reply signal to the host.

The MODBUS protocol only allows communication between the host and terminal devices, and does not allow data exchange between terminal devices.

1. Transmission Method

The MODBUS protocol information transmission is asynchronous and in bytes, the communication data transmitted between the master and slave includes 1 start bit, 8 data bits, check bit, and 1 stop bit.

2. Parameter Settings

Communication parameters can be set on the touch screen, as follows:

Communication address: 1-63 can be set, and it is recommended to set the address in sequence starting from 1.

Baud rate: 1-5 can be set, 1 represents 9600, 2 represents 19200, 3 represents 38400, 4 represents 57600, and 5 represents 115200. If the distance is long and there is no requirement for communication speed, it is recommended to set the baud rate to 9600.

3. Information Frame Format

Address code	Function code	Data area	CRC check
			code
1 byte	1 byte	N bytes	2 bytes

Address code: consisting of 1 byte, this device uses address numbers 1-63. When multiple devices are connected to a host, each device address number must be unique.

Data area:

01H, read coil command

02H, read input coil command

03H, read register

04H, read input register

05H, write single coil

06H, write single register

CRC check code: to verify whether the received data is correct.

4. Data Point Table

During external communication, the specific data and address are shown below.

4.1、01H/05H

Function code	Modbus address	Data name		
Read 01H/write 05H	0X0000	Allow to write set value		
Read 01H/write 05H	0X0001	Ready state		
Read 01H/write 05H	0X0002	Soft start/soft stop status		
Read 01H/write 05H	0X0003	Running state		
Read 01H/write 05H	0X0004	Fault status		
Read 01H/write 05H	0X0005	Bypass closing status		
Read 01H/write 05H	0X0006	Bypass opening status		
Read 01H/write 05H	0X0007	2# contactor closing status		
Read 01H/write 05H	0X0008	2# contactor opening status		
Read 01H/write 05H	0X0009	Circuit breaker opening action		
Read 01H/write 05H	0X000A	A-phase pulse start output		
Read 01H/write 05H	0X000B	B-phase pulse start output		
Read 01H/write 05H	0X000C	C-phase pulse start output		
Read 01H/write 05H	0X000D	Status reset		
Read 01H/write 05H	0X000E	Spare point		
Read 01H/write 05H	0X000F	Working in 1# set value area		
Read 01H/write 05H	0X0010	Working in 2# set value area		
Read 01H/write 05H	0X0011	Working in 3# set value area		
Read 01H/write 05H	0X0012	Working in 4# set value area		
Read 01H/write 05H	0X0013	Working in the first set of set values		
	0770014	Working in the second set of set		
Read 01H/write 05H	0X0014	values		
Read 01H/write 05H	0X0015	Working in the third set of set values		
Read 01H/write 05H	0X0016	Working in the fourth set of set values		
Read 01H/write 05H	0X0017	Working in the fifth set of set values		
Read 01H/write 05H	0X0018	Backup		
Read 01H/write 05H	0X0019	Backup		
Read 01H/write 05H	0X001A	Backup		
D 10111/ '/ 0511	03/0010	Calibration of three-phase voltage		
Read 01H/write 05H	0X001B	coefficient		
Deed 0111/mite 0511	0¥001C	Calibration of three-phase current		
Read 01H/write 05H	02001C	coefficient		
Deed 0111/mite 0511	02001D	A-phase voltage coefficient		
Read 01H/write 05H	0X001D	calibration		
Pood 01U/write 05U	0¥001E	B-phase voltage coefficient		
Keau 01H/write 05H	OA001E	calibration		
Dead 01U/write 05U	0 V 001E	C-phase voltage coefficient		
Keau 01H/write 05H	0X001F	calibration		
Read 01H/write 05H	0X0020	A-phase current coefficient calibration		
Read 01H/write 05H	0X0021	B-phase current coefficient calibration		
Read 01H/write 05H	0X0022	C-phase current coefficient calibration		
Read 01H/write 05U	00002	Restore default values for shared area		
	0/10023	set value		
Read 01H/write 05U	000024	Restore the current set value of the		
	0/100/24	unit to the default value		
Read 01H/write 05H	0X0025	Set value not cured		
Read 01H/write 05H	0X0026	Coefficient set 1		

4.2、02H

Function code	Modbus address	Data name
02H	0X0000	Device heartbeat
02H	0X0001	Starting signal input

02H	0X0002	Shutdown signal input		
02H	0X0003	External fault input		
02H	0X0004	Bypass position input		
02H	0X0005	Circuit breaker position input		
02H	0X0006	2 # contactor input		
02H	0X0007	Emergency stop input/multi-split		
02H	0X0008	Direct start input/multi-split		
02H	0X0009	Start timeout		
02H	0X000A	Overcurrent section 1		
02H	0X000B	Overcurrent section 2		
02H	0X000C	Negative sequence current section 1		
02H	0X000D	Negative sequence current section 2		
02H	0X000E	Running load loss		
02H	0X000F	Overvoltage		
02H	0X0010	Undervoltage		
02H	0X0011	Negative sequence voltage		
02H	0X0012	External fault		
02H	0X0012	External fault		
0211	0X0013	Starting current not decreasing		
0211	0X0014	Durase conditions not met		
02H	0X0015	Evilue abutdown during stortun		
02H	0X0010	Failure shuldown during startup		
02H	0X0017	Underined fault		
02H	0X0018	A-phase synchronization signal loss		
02H	0X0019	B-phase synchronization signal loss		
02H	0X001A	C-phase synchronization signal loss		
02H	0X001B	yet		
02H	0X001C	Start prohibited, circuit breaker not closed		
02H	0X001D	Start prohibited, bypass not in position		
02H	0X001E	Start prohibited, 2 # contactor position error		
02H	0X001F	Start prohibited, fault not eliminated		
02H	0X0020	Start prohibited, not in ready state		
02H	0X0021	Starting prohibited, no voltage signal		
02H	0X0022	Bypass closing fault		
02H	0X0023	Bypass opening fault		
02H	0X0024	Starting prohibited excessive current		
02H	0X0025	2 # contactor closing fault		
02H	0X0026	2 # contactor opening fault		
02H	0X0027	Test start prohibited when in ready		
0211	020028	Circuit breaker opening foult		
0211	0X0028	Soft stop timeout		
02H	0X0029	Soft stop tilleout		
0211	07002A	Spare point		
02H	0X002B	not measured		
02H	0X002C	Starting prohibited, not a positive sequence alarm		
02H	0X002D	Starting prohibited, not a negative sequence alarm		
02H	0X002E	Backup		
02H	0X002F	Protection resultant signal		
02H	0X0030	Starting prohibited, phase sequence		

		alarm		
02H	0X0031	Starting prohibited, frequency error		
02H	0X0032	Direct start allowed		
02H	0X0033	FLASH master partition table is bad		
02H	0X0034	FLASH backup partition table is bad		
02H	0X0035	Manual shutdown during soft start process		
02H	0X0036	Unexpected trip of circuit breaker during soft start process		
02H	0X0037	Unexpected trip of bypass contactor during soft start process		
02H	0X0038	Unexpected trip of 2 # contactor during soft start process		
02H	0X0039	Unexpected trip of circuit breaker when running		
02H	0X003A	Unexpected trip of bypass contactor when running		
02H	0X003B	Unexpected trip of 2# contactor when running		
02H	0X003C	Unexpected trip of circuit breaker during soft stop process		
02H	0X003D	Unexpected trip of bypass contactor during soft stop process		
02H	0X003E	Unexpected trip of 2 # contactor during soft stop process		
02H	0X003F	Incorrect bypass closing in ready state		
02H	0X0040	Incorrect closing of 2 # contactor in ready state		
02H	0X0041	Record waveform		
02H	0X0042	Clear waveform		

4.3、03H/06H

Function code	Modbus address	Data type	Ratio	Data name
Read 03H/write 06H	0X0000	ushort	×1	Heartbeat counter
Read 03H/write 06H	0X0001	ushort	×1	RS485 communication address
Read 03H/write 06H	0X0002	ushort	×1	RS485 communication baud rate
Read 03H/write 06H	0X0003	ushort	×1	Debug mode password
Read 03H/write 06H	0X0004	ushort	×100	Reference value for calibration
Read 03H/write 06H	0X0005	ushort	×1	System frequency setting
Read 03H/write 06H	0X0006	ushort	×1	System phase sequence setting
Read 03H/write 06H	0X0007	ushort	×1	Output pulse width
Read 03H/write 06H	0X0008	short	×1	4-20mA output enable
Read 03H/write 06H	0X0009	ushort	×1000	4-20mA output offset value
Read 03H/write 06H	0X000A	ushort	×1000	4-20mA output coefficient

Read 03H/write 06H	0X000B	ushort	×1	Start interval time
Read 03H/write 06H	0X000C	ushort	×1	Start delay
Read 03H/write 06H	0X000D	ushort	×1	Linkage startup
Read 03H/write 06H	0X000E	ushort	×1	Shutdown signal negation
Read 03H/write 06H	0X000F	ushort	×1	Fault signal negation
Read 03H/write 06H	0X0010	ushort	×1	Single machine/multi-machine mode
Read 03H/write 06H	0X0011	ushort	×1	Selected set value group number
Read 03H/write 06H	0X0012	ushort	×1	Selected set value set number
Read 03H/write 06H	0X0013	ushort	×1	Current recording during startup
03H	0X0014	ushort	×1	Device type
03H	0X0015	ushort	×1	Firmware version
Read 03H/write 06H	0X0016	ushort	×1	Year of Manufacture
Read 03H/write 06H	0X0017	ushort	×1	Date of Manufacture
Read 03H/write 06H	0X0018	ushort	×1	Product serial number
Read 03H/write 06H	0X0019	ushort	×10000	A-phase voltage coefficient
Read 03H/write 06H	0X001A	ushort	×10000	B-phase voltage coefficient
Read 03H/write 06H	0X001B	ushort	×10000	C-phase voltage coefficient
Read 03H/write 06H	0X001C	ushort	×10000	A-phase current coefficient
Read 03H/write 06H	0X001D	ushort	×10000	B-phase current coefficient
Read 03H/write 06H	0X001E	ushort	×10000	C-phase current coefficient
03H	0X001F	ushort	×1	Group number of the set value
03H	0X0020	ushort	×1	Set number of the set value
Read 03H/write 06H	0X0021	ushort	×1	Rated current
Read 03H/write 06H	0X0022	ushort	×1	PT transformation ratio
Read 03H/write 06H	0X0023	ushort	×1	CT transformation ratio
Read 03H/write 06H	0X0024	ushort	×1	Configuration method of 2 # contactor
Read 03H/write 06H	0X0025	ushort	×1	Bypass acceleration time
Read 03H/write 06H	0X0026	ushort	×1	Trigger cutoff angle
Read 03H/write	0X0027	ushort	×1	Synchronous motor

06H				coefficient
Read 03H/write 06H	0X0028	ushort	×1	Starting mode
Read 03H/write 06H	0X0029	ushort	×1	Initial voltage
Read 03H/write 06H	0X002A	ushort	×1	Ramp time
Read 03H/write 06H	0X002B	ushort	×1	Current limiting multiple
Read 03H/write 06H	0X002C	ushort	×1	Current regulation coefficient
Read 03H/write 06H	0X002D	ushort	×1	Step voltage
Read 03H/write 06H	0X002E	ushort	×1	Step duration
Read 03H/write 06H	0X002F	ushort	×1	Jog start time
Read 03H/write 06H	0X0030	ushort	×1	Two-stage voltage
Read 03H/write 06H	0X0031	ushort	×1	Two-stage time
Read 03H/write 06H	0X0032	ushort	×1	Shutdown method
Read 03H/write 06H	0X0033	ushort	×1	Soft stop cutoff voltage
Read 03H/write 06H	0X0034	ushort	×1	Soft stop time
Read 03H/write 06H	0X0035	ushort	×1	Start timeout set value
Read 03H/write 06H	0X0036	ushort	×1	Set value of overcurrent section 1
Read 03H/write 06H	0X0037	ushort	×1	Set value of overcurrent section 2
Read 03H/write 06H	0X0038	ushort	×1	Overcurrent section 2 delay
Read 03H/write 06H	0X0039	ushort	×1	Set value of negative sequence current section 1
Read 03H/write 06H	0X003A	ushort	×1	Negative sequence current section 1 delay
Read 03H/write 06H	0X003B	ushort	×1	Set value of negative sequence current section 2
Read 03H/write 06H	0X003C	ushort	×1	Negative sequence current section 2 delay
Read 03H/write 06H	0X003D	ushort	×1	Load loss set value
Read 03H/write 06H	0X003E	ushort	×1	Load loss delay
Read 03H/write 06H	0X003F	ushort	×1	Overvoltage set value
Read 03H/write 06H	0X0040	ushort	×1	Overvoltage delay
Read 03H/write 06H	0X0041	ushort	×1	Undervoltage set value
Read 03H/write 06H	0X0042	ushort	×1	Undervoltage delay
Read 03H/write	0X0043	ushort	×1	Set value of negative

06H				sequence voltage
Read 03H/write 06H	0X0044	ushort	×1	Negative sequence voltage delay
Read 03H/write 06H	0X0045	ushort	×1	Start timeout cast/cancel protective board
Read 03H/write 06H	0X0046	ushort	×1	Overcurrent section 1 cast/cancel protective board
Read 03H/write 06H	0X0047	ushort	×1	Overcurrent section 2 cast/cancel protective board
Read 03H/write 06H	0X0048	ushort	×1	Negative sequence overcurrent section 1 cast/cancel protective board
Read 03H/write 06H	0X0049	ushort	×1	Negative sequence overcurrent section 2 cast/cancel protective board
Read 03H/write 06H	0X004A	ushort	×1	Load loss cast/cancel protective board
Read 03H/write 06H	0X004B	ushort	×1	Overvoltage cast/cancel protective board
Read 03H/write 06H	0X004C	ushort	×1	Undervoltage cast/cancel protective board
Read 03H/write 06H	0X004D	ushort	×1	Negative sequence voltage cast/cancel protective board
Read 03H/write 06H	0X004E	ushort	×1	Input fault cast/cancel protective board
Read 03H/write 06H	0X004F	ushort	×1	Direct start time
Read 03H/write 06H	0X0050	ushort	×1	Control mode
03H	0X0051	ushort	×1	Group number 1 set value sector number
03H	0X0052	ushort	×1	Group number 2 set value sector number
03H	0X0053	ushort	×1	Group number 3 set value sector number
03H	0X0054	ushort	×1	Group number 4 set value sector number
03H	0X0055	ushort	×1	Reading set value error counter

4.3、04H

Function code	Modbus address	Data type	Ratio	Data name
04H	0X0000	float	×1	Uab coefficient
04H	0X0002	float	×1	Ubc coefficient
04H	0X0004	float	×1	Uca coefficient
04H	0X0006	float	×1	Ia coefficient
04H	0X0008	float	×1	Ib coefficient
04H	0X000a	float	×1	Ic coefficient
04H	0X000c	float	×1	Voltage Uab
04H	0X000e	float	×1	Voltage Ubc

04H	0X0010	float	×1	Voltage Uca
04H	0X0012	float	×1	Current Ia
04H	0X0014	float	×1	Current Ib
04H	0X0016	float	×1	Current Ic
04H	0X0018	float	×1	Three-phase average
04H	0X001a	float	×1	Load rate
04H	0X001c	float	×1	System frequency
04H	0X001e	float	×1	Trigger angle
04H	0X0020	float	×1	Power factor
04H	0X0022	float	×1	Uala angular phase difference
04H	0X0024	float	×1	UbIb angular phase difference
04H	0X0026	float	×1	UcIc angular phase difference
04H	0X0028	float	×1	Negative sequence current
04H	0X002a	float	×1	Negative sequence voltage
0411	0.000	1	v 1	Duration of device being
04H	0X002c	ulong	×1	powered on this time
04H	0X002e	uint16	×1	Device reset counter
04H	0X002f	uint16	×1	Device operating status
04H	0X0030	uint16	×10	Voltage Uab
04H	0X0031	uint16	×10	Voltage Ubc
04H	0X0032	uint16	×10	Voltage Uca
04H	0X0033	uint16	×10	Current Ia
04H	0X0034	uint16	×10	Current Ib
04H	0X0035	uint16	×10	Current Ic
04H	0X0036	uint16	×10	Three-phase average current
04H	0X0037	uint16	×10	Load rate
04H	0X0038	uint16	×100	System frequency
04H	0X0039	uint16	×10	Trigger angle
04H	0X003a	int16	×1000	Power factor
04H	0X003b	int16	×10	UaIa angular phase difference
04H	0X003c	int16	×10	UbIb angular phase difference
04H	0X003d	int16	×10	UcIc angular phase difference
04H	0X003e	int16	×10	Negative sequence current
04H	0X003f	int16	×10	Negative sequence voltage
04H	0X0040	uint16	×10	Duration for startup
04H	0X0041	uint16	×1	Countdown length
04H	0X0042	uint16	×1	Running time in days
04H	0X0043	uint16	×1	Running time in hours
04H	0X0044	uint16	×1	Running time in minutes
04H	0X0045	uint16	×1	Running time in seconds
04H	0X0046	uint16	×1	20mA full range value
04H	0X0047	uint16	×100	20mA output value
04H	0X0048	uint16	×100	20mA-PWM ratio
04H	0X0049	uint16	×1	Current phase sequence
04H	0X004a	uint16	×1	Phase sequence alarm
04H	0X004b	uint16	×1	Backup for debugging
04H	0X004c	uint16	×1	Backup for debugging

04H	0X004d	uint16	×1	Backup for debugging
04H	0X004e	uint16	×1	Backup for debugging

Note: In the running state, 0 represents communication interrupted, 1 represents ready, 2 represents start, 3 represents running, 4 represents soft stop, 5 represents fault, 6 represents testing, 7 represents emergency stop, and 8 represents standby.

5. Communication Applications

An example of reading data message is as follows:

01	H command				
	Address code	Function code	Start address	Number of	CRC check
				Registers	code
	01	01	00 00	00 27	7C10
Aı	n example of a call	back message is a	s follows	•	
	Address code	Function code	Data length	Data	CRC check
					code
	01	01	05	Data1-data5	HSD2000
02	H command				
	Address code	Function code	Start address	Number of	CRC check
				registers	code
	01	02	00 00	00 43	39FB
A	n example of a call	back message is a	s follows		
	Address code	Function code	Data length	Data	CRC check
					code
	01	02	09	Data1-data9	HSD2000
03	H command				
	Address code	Function code	Start address	Number of	CRC check
				registers	code
	01	03	00 00	00 56	C5F4
A	n example of a call	back message is a	s follows		
	Address code	Function code	Data length	Data	CRC check
					code
	01	03	AC	Data1-data86	HSD2000
04	H command				
	Address code	Function code	Start address	Number of	CRC check
				registers	code
	01	04	00 00	00 4F	B1FE
A	n example of a calll	back message is a	s follows		
	Address code	Function code	Data length	Data	CRC check
					code
	01	04	9E	Data1-data79	HSD2000
05	05H command				
	Address code	Function code	Register address	Written value	CRC check
					code
	01	05	00 1D	FF00	1C3C
	Set the coil status t	to ON or OFF and	l write 0XFF00.		

06H command

Address code	Function code	Register address	Written value	CRC check code
01	06	00 1D	0064	1827

Chapter VII Maintenance and Troubleshooting

1. Daily Maintenance

The HSD2000 series MV solid-state soft starter is designed to be a maintenance-free product. Like other electronic devices, the product shall be subject to regular inspection for air contamination, moisture and industrial production pollution. Product contamination can cause high-voltage discharge or affect equipment heat dissipation. Bolts shall be checked for looseness every year; and screws must be tightened with appropriate torque. The air gap of the vacuum contactor shall be checked to ensure that it meets the requirements according to the manufacturer's technical manual.

For equipment not in use over an extended period of time, cabinet surfaces, instruments and indicator lights shall be kept clean; the grounding of cable casing shall be checked and the insulation pad and the cabinet inside shall be cleaned. The grounding shall be checked, the lightning arresters shall be cleaned and inspected, the grounding resistance shall be measured, and the cable sleeves and support insulators shall be cleaned and inspected.

2. System Self-test

The HSD2000 series MV solid-state soft starter requires regular self-inspection to maintain a good condition.

2.1 Communication check

If the device is powered on, the touch screen data display is normal and there is no communication alarm, then the communication is normal.

2.2. Thyristor test

Test the resistance value of each GK terminal on the trigger board with a multimeter, which is the resistance value of the thyristor gate and cathode, approximately 15 ohms. If the measured resistance deviates by 50% from the normal value, there may be a problem with the thyristor crimping or the thyristor itself. Test the resistance values of the left and right K terminals on the trigger board with a multimeter, which are approximately 190K. If the resistance value is severely low, it is possible that the thyristor has broken down.

2.3. Input and output tests

After testing the thyristor, click on the touch screen to enter Hardware Test and enter the debug password. Conduct input and output tests according to the description in Section 7 of Chapter 4 in the Manual. If all tests are normal, the soft start control system and electrical secondary wiring are normal.

3. Fault Analysis

When fault occurs, the display screen and indicator light will have corresponding fault indications. When restarting the motor, it is necessary to have the existing fault solved. When coming across any fault that cannot be resolved, the manufacturer should be contacted in a timely manner for assistance in troubleshooting.

Fault	Causes	Solutions
phenomenon		

Thyristor fault	Thyristor breakdown or damage	Disconnect the high-voltage power supply of the previous stage, connect the grounding wire, and measure the resistance value of the left and right K terminals of the trigger board with a multimeter. The normal value is 190K, if it is too small, the thyristor will break down and replacement is required.
	1) There are faults	1) Troubleshooting the cause of the
Unable to start	2) Not in ready state	malfunction
and stop	3) Starting interval blocked	2) Check the controller status
normally		3) The time interval between two starts is
		not up, please wait
Motor unable	The starting limit current is too	Set appropriate current limiting multiples
to complete	small, and the starting torque is	
-	insufficient	
Motor cannot	1) Parameter setting error	1) Pay attention to the mechanical or
be bypassed	2) Starting current does not	electrical retention of the contactor
	decrease	2) Increase the starting current
Start timeout	Unreasonable setting of starting	The current limit value is too low.
	parameters	
	1) Phase-loss starting	1) Thyristor one or half phases not
	2) CT secondary wiring fault	conducting
Negative sequence current	3) Phase sequence error	2) Loose or reverse CT wiring
	4) Motor fault	3) Current phase sequence error
	5) PT wiring error	4) Motor maintenance
		4) PT wiring error leads to synchronization
		signal error, triggering mismatch and
		disordered starting current.
Inaccurate	1) PT/CT transformation ratio	1) Change to correct transformation ratio
measurement	setting error	2) Change to the correct coefficient
of current and	2) Current channel coefficient	3) Replace the corresponding hardware
voltage	error	circuit board
voltage	3) Hardware failure	

Chapter VIII Warranty and After-sales Service

1. Warranty Period

The warranty period of the HSD2000 series MV solid-state soft starter is 12 months, calculated from the completion of debugging or 18 months from the delivery date, whichever comes first. If parts and components are damaged or cannot be used normally due to equipment quality issues within the warranty period, the manufacturer is responsible for providing timely and free maintenance or replacement of the parts and components.

2. Warranty Information

1) Our company's products are free of charge for maintenance during the warranty period; however, losses caused by human error, natural disasters such as fires, floods, earthquakes, or typhoons, etc., are not within this scope.

2) Beyond the warranty period, our company provides lifelong free technical consultation and paid maintenance services for the products we produce.

3. Maintenance Instructions

1) Inspect and repair faults according to the product manual.

2) When the cause cannot be determined, please contact our company's technical support department in a timely manner to provide feedback on the fault phenomenon, or conduct on-site inspections according to the guidance of our company's technical personnel to accurately identify the cause of the fault and handle the problem promptly.

3) When the guidance provided is not conducive to solving the problem, we will make a judgment based on the user's description or known situation, and delegate personnel to provide field service as soon as possible. For field services beyond the warranty period, users should pay the service fee first.

The contents of this manual are subject to change without notice

Hope Senlan Science And Technology Holding Corp., Ltd. Email: info@slanvert.com.cn Site: www.slanvert.com.cn Tel: +86 028 8565 3587 Address: No. 1599, Konggang 2 road, Xi HangGang Economic Development Zone, Chengdu, Sichuan Province, China.